Detecting influential observations in Kernel PCA
Kernel Principal Component Analysis extends linear PCA from a Euclidean space to any reproducing kernel Hilbert space. Robustness issues for Kernel PCA are studied. The sensitivity of Kernel PCA to individual observations is characterized by calculating the influence function. A robust Kernel PCA method is proposed by incorporating kernels in the Spherical PCA algorithm. Using the scores from Spherical Kernel PCA, a graphical diagnostic is proposed to detect points that are influential for ordinary Kernel PCA.
Year of publication: |
2010
|
---|---|
Authors: | Debruyne, Michiel ; Hubert, Mia ; Van Horebeek, Johan |
Published in: |
Computational Statistics & Data Analysis. - Elsevier, ISSN 0167-9473. - Vol. 54.2010, 12, p. 3007-3019
|
Publisher: |
Elsevier |
Saved in:
Online Resource
Saved in favorites
Similar items by person
-
Robustness of reweighted Least Squares Kernel Based Regression
Debruyne, Michiel, (2010)
-
Generalized graphical models for discrete data
Teugels, Jozef L., (1998)
-
De Roeselaarse poorterie : bijdrage tot de geschiedenis van Roeselare en Ommeland
DeBruyne, Michiel, (1964)
- More ...