The Use of Deep Reinforcement Learning in Tactical Asset Allocation
Year of publication: |
[2021]
|
---|---|
Authors: | Katongo, Musonda ; Bhattacharyya, Ritabrata |
Publisher: |
[S.l.] : SSRN |
Subject: | Portfolio-Management | Portfolio selection | Theorie | Theory | Lernen | Learning | Lernprozess | Learning process |
Extent: | 1 Online-Ressource (18 p) |
---|---|
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments February 4, 2021 erstellt |
Other identifiers: | 10.2139/ssrn.3812609 [DOI] |
Classification: | G11 - Portfolio Choice ; C61 - Optimization Techniques; Programming Models; Dynamic Analysis |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Continuous-Time Mean-Variance Portfolio Selection : A Reinforcement Learning Framework
Wang, Haoran, (2019)
-
Halperin, Igor, (2022)
-
Asset Allocation : From Markowitz to Deep Reinforcement Learning
Durall, Ricard, (2022)
- More ...
-
Efficient Market Hypothesis Empirical Test to Debunk the Weak Form Using Selected Stocks
Apolaagoa, Christian Ayemoma, (2021)
-
Using Principal Component Analysis on Crypto Correlations to Build a Diversified Portfolio
Guinda, María, (2021)
-
Short Term Trading Models Using Hurst Exponent and Machine Learning
Sidhu, Gursewak Singh, (2021)
- More ...