Forecasting volatility in bitcoin market
Year of publication: |
2020
|
---|---|
Authors: | Segnon, Mawuli ; Bekiros, Stelios |
Published in: |
Annals of finance. - Berlin : Springer, ISSN 1614-2446, ZDB-ID 2174824-X. - Vol. 16.2020, 3, p. 435-462
|
Subject: | Bitcoin | Multifractal processes | GARCH processes | Model confidence set | Likelihood ratio test | Volatilität | Volatility | ARCH-Modell | ARCH model | Prognoseverfahren | Forecasting model | Virtuelle Währung | Virtual currency | Stochastischer Prozess | Stochastic process | Schätztheorie | Estimation theory | Finanzmarkt | Financial market | Statistischer Test | Statistical test |
-
Forecasting Bitcoin risk measures : a robust approach
Trucíos, Carlos, (2019)
-
A hypothesis test method for detecting multifractal scaling, applied to Bitcoin prices
Jiang, Chuxuan, (2020)
-
Prüser, Jan, (2024)
- More ...
-
Forecasting US GNP growth : The role of uncertainty
Segnon, Mawuli, (2018)
-
Multifractal models in finance: Their origin, properties, and applications
Segnon, Mawuli, (2013)
-
Modeling and forecasting crude oil price volatility: Evidence from historical and recent data
Lux, Thomas, (2015)
- More ...