Herleitung kinetischer gleichungen mit dem verallgemeinerten Stratonovich-Verfahren
The kinetic equations for the 2-time conditional probability density are derived for Coulomb systems and coupled one-dimensional harmonic oscillators. The coupled oscillators are also treated exactly. The exact second central moment of the space coordinate is compared with that derived from the kinetic equation. This shows which approximations of the generalized Stratonovich method can be responsible for the possibly irreversible character of the derived kinetic equations. Using the approximation of long difference times the kinetic equations for Coulumb systems with and without homogeneous external magnetic field are transformed into the well-known Balescu-Lenard equations.
Year of publication: |
1977
|
---|---|
Authors: | Gerlich, G. ; Kagermann, H. |
Published in: |
Physica A: Statistical Mechanics and its Applications. - Elsevier, ISSN 0378-4371. - Vol. 88.1977, 2, p. 283-304
|
Publisher: |
Elsevier |
Saved in:
Online Resource
Saved in favorites
Similar items by person
-
Über kinetische gleichungen für stochastische Prozesse mit entstehenden und vergehenden Pfaden
Gerlich, G., (1982)
-
Eine verallgemeinerung des stratonovich-verfahrens für anwendungen in der statistischen mechanik
Gerlich, G., (1976)
-
Kagermann, Henning, (2006)
- More ...