Machine learning for regularized survey forecast combination : partially-egalitarian LASSO and its derivatives
Year of publication: |
2019
|
---|---|
Authors: | Diebold, Francis X. ; Shin, Minchul |
Published in: |
International journal of forecasting. - Amsterdam [u.a.] : Elsevier, ISSN 0169-2070, ZDB-ID 283943-X. - Vol. 35.2019, 4, p. 1679-1691
|
Subject: | Forecast combination | Forecast surveys | LASSO | Model selection | Regularization | Shrinkage | Theorie | Theory | Prognoseverfahren | Forecasting model | Regressionsanalyse | Regression analysis | Künstliche Intelligenz | Artificial intelligence | Wirtschaftsprognose | Economic forecast | Aggregation | Eurozone | Euro area | Modellierung | Scientific modelling |
Type of publication: | Article |
---|---|
Type of publication (narrower categories): | Aufsatz in Zeitschrift ; Article in journal |
Language: | English |
Notes: | Erratum enthalten in: International journal of forecasting, Volume 37, issue 3 (July/September 2021), Seite 1308-1309 |
Other identifiers: | 10.1016/j.ijforecast.2018.09.006 [DOI] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Beating the simple average : egalitarian LASSO for combining economic forecasts
Diebold, Francis X., (2017)
-
Real-time inflation forecasting with high-dimensional models : the case of Brazil
Garcia, Márcio Gomes Pinto, (2017)
-
Diebold, Francis X., (2018)
- More ...
-
On the Comparison of Interval Forecasts
Askanazi, Ross, (2018)
-
Real-time forecast evaluation of DSGE models with stochastic volatility
Diebold, Francis X., (2017)
-
Assessing point forecast accuracy by stochastic loss distance
Diebold, Francis X., (2015)
- More ...