Measuring international uncertainty using global vector autoregressions with drifting parameters
Year of publication: |
2023
|
---|---|
Authors: | Pfarrhofer, Michael |
Published in: |
Macroeconomic dynamics. - Cambridge : Cambridge Univ. Press, ISSN 1469-8056, ZDB-ID 1501533-6. - Vol. 27.2023, 3, p. 770-793
|
Subject: | Bayesian state-space models | factor stochastic volatility in mean | global-local shrinkage prior | multi-country | VAR-Modell | VAR model | Bayes-Statistik | Bayesian inference | Theorie | Theory | Welt | World | Volatilität | Volatility | Zustandsraummodell | State space model | Stochastischer Prozess | Stochastic process | Schätzung | Estimation |
-
Macroeconomic forecasting with large stochastic volatility in mean VARs
Cross, Jamie, (2021)
-
Large mixed-frequency VARs with a parsimonious time-varying parameter structure
Götz, Thomas B., (2018)
-
Measuring international uncertainty using global vector autoregressions with drifting parameters
Pfarrhofer, Michael, (2019)
- More ...
-
Implications of macroeconomic volatility in the Euro area
Hauzenberger, Niko, (2018)
-
Stochastic model specification in Markov switching vector error correction models
Huber, Florian, (2018)
-
Fischer, Manfred M., (2018)
- More ...