Extent:
Online-Ressource (1 online resource (xv, 456 p.))
ill.
Type of publication: Book / Working Paper
Language: English
Notes:
Includes index. - Includes bibliographical references and index. - Description based on print version record
Option Pricing and Estimation of Financial Models with R; Contents; Preface; 1 A synthetic view; 1.1 The world of derivatives; 1.1.1 Different kinds of contracts; 1.1.2 Vanilla options; 1.1.3 Why options?; 1.1.4 A variety of options; 1.1.5 How to model asset prices; 1.1.6 One step beyond; 1.2 Bibliographical notes; References; 2 Probability, random variables and statistics; 2.1 Probability; 2.1.1 Conditional probability; 2.2 Bayes' rule; 2.3 Random variables; 2.3.1 Characteristic function; 2.3.2 Moment generating function; 2.3.3 Examples of random variables; 2.3.4 Sum of random variables
2.3.5 Infinitely divisible distributions2.3.6 Stable laws; 2.3.7 Fast Fourier Transform; 2.3.8 Inequalities; 2.4 Asymptotics; 2.4.1 Types of convergences; 2.4.2 Law of large numbers; 2.4.3 Central limit theorem; 2.5 Conditional expectation; 2.6 Statistics; 2.6.1 Properties of estimators; 2.6.2 The likelihood function; 2.6.3 Efficiency of estimators; 2.6.4 Maximum likelihood estimation; 2.6.5 Moment type estimators; 2.6.6 Least squares method; 2.6.7 Estimating functions; 2.6.8 Confidence intervals; 2.6.9 Numerical maximization of the likelihood; 2.6.10 The δ-method; 2.7 Solution to exercises
2.8 Bibliographical notesReferences; 3 Stochastic processes; 3.1 Definition and first properties; 3.1.1 Measurability and filtrations; 3.1.2 Simple and quadratic variation of a process; 3.1.3 Moments, covariance, and increments of stochastic processes; 3.2 Martingales; 3.2.1 Examples of martingales; 3.2.2 Inequalities for martingales; 3.3 Stopping times; 3.4 Markov property; 3.4.1 Discrete time Markov chains; 3.4.2 Continuous time Markov processes; 3.4.3 Continuous time Markov chains; 3.5 Mixing property; 3.6 Stable convergence; 3.7 Brownian motion; 3.7.1 Brownian motion and random walks
3.7.2 Brownian motion is a martingale3.7.3 Brownian motion and partial differential equations; 3.8 Counting and marked processes; 3.9 Poisson process; 3.10 Compound Poisson process; 3.11 Compensated Poisson processes; 3.12 Telegraph process; 3.12.1 Telegraph process and partial differential equations; 3.12.2 Moments of the telegraph process; 3.12.3 Telegraph process and Brownian motion; 3.13 Stochastic integrals; 3.13.1 Properties of the stochastic integral; 3.13.2 Itô formula; 3.14 More properties and inequalities for the Itô integral; 3.15 Stochastic differential equations
3.15.1 Existence and uniqueness of solutions3.16 Girsanov's theorem for diffusion processes; 3.17 Local martingales and semimartingales; 3.18 Lévy processes; 3.18.1 Lévy-Khintchine formula; 3.18.2 Lévy jumps and random measures; 3.18.3 Itô-Lévy decomposition of a Lévy process; 3.18.4 More on the Lévy measure; 3.18.5 The Itô formula for Lévy processes; 3.18.6 Lévy processes and martingales; 3.18.7 Stochastic differential equations with jumps; 3.18.8 Itô formula for Lévy driven stochastic differential equations; 3.19 Stochastic differential equations in Rn; 3.20 Markov switching diffusions
3.21 Solution to exercises
ISBN: 978-1-283-40519-5 ; 978-0-470-74584-7 ; 978-1-119-99008-6 ; 0-470-74584-3 ; 978-0-470-74584-7 ; 978-1-119-99008-6
Source:
ECONIS - Online Catalogue of the ZBW
Persistent link: https://www.econbiz.de/10012683428