Predicting volatility based on interval regression models
Year of publication: |
2022
|
---|---|
Authors: | Qu, Hui ; He, Mengying |
Published in: |
Journal of risk and financial management : JRFM. - Basel : MDPI, ISSN 1911-8074, ZDB-ID 2739117-6. - Vol. 15.2022, 12, Art.-No. 564, p. 1-21
|
Subject: | Markov regime switching | heterogeneous autoregressive | interval data | interval regression model | volatility prediction | Volatilität | Volatility | Prognoseverfahren | Forecasting model | Schätzung | Estimation | Markov-Kette | Markov chain | Regressionsanalyse | Regression analysis | Schätztheorie | Estimation theory |
Type of publication: | Article |
---|---|
Type of publication (narrower categories): | Aufsatz in Zeitschrift ; Article in journal |
Language: | English |
Other identifiers: | 10.3390/jrfm15120564 [DOI] hdl:10419/275041 [Handle] |
Classification: | G17 - Financial Forecasting ; c58 ; C52 - Model Evaluation and Testing |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Predicting volatility based on interval regression models
Qu, Hui, (2022)
-
Machine learning for predicting stock return volatility
Filipović, Damir, (2021)
-
A penalized two-pass regression to predict stock returns with time-varying risk premia
Bakalli, Gaetan, (2021)
- More ...
-
Predicting volatility based on interval regression models
Qu, Hui, (2022)
-
Qu, Hui, (2024)
-
Qiao, Jian, (2023)
- More ...