PREDICTION OF ECONOMIC VALUE ADDED OF IRANIAN LISTED COMPANIES
Economic value added (EVA) is an important issue for economic analysts and investors. This article proposes a method for predicting economic value added of the automotive and steel listed companies on the Tehran Stock Exchange (TSE) using neural networks. The data were collected from the audited financial statements during 2006-2011. EVA was predicted using linear regression and neural networks and the results were compared with actual data. The findings suggested that neural networks method outperforms linear regression in predicting EVA.
Year of publication: |
2013
|
---|---|
Authors: | MAHMOUD, MOUSAVI SHIRI ; MEHDI, SALEHI ; MOSTAFA, BAHRAMI |
Published in: |
Современная экономика: проблемы, тенденции, перспективы Sovremennaa ekonomika: problemy, tendencii, perspektivy. - CyberLeninka. - 2013, 3, p. 45-55
|
Publisher: |
CyberLeninka Муромский институт (филиал) Государственного образовательного учреждения высшего профессионального образования "Владимирский государственный университет им. Александра Григорьевича и Николая Григорьевича Столетовых" |
Subject: | НЕЙРОННЫЕ СЕТИ | ЭКОНОМИЧЕСКАЯ ДОБАВЛЕННАЯ СТОИМОСТЬ | ФИНАНСОВЫЕ КОЭФФИЦИЕНТЫ | ТЕГЕРАНСКАЯ ФОНДОВАЯ БИРЖА | ИРАН | NEURAL NETWORKS | ECONOMIC VALUE ADDED | FINANCIAL RATIOS | TEHRAN STOCK EXCHANGE | IRAN |
Saved in:
freely available
Saved in favorites
Similar items by subject
-
Narimizadeh, Fatemeh, (2017)
-
The dynamics of exchange market pressure and inflation in Iran : regime switching approach
Sayadi, Mohammad, (2019)
-
КОРПОРАТИВНОЕ УПРАВЛЕНИЕ КАК ФАКТОР СТРАТЕГИЧЕСКОГО УСПЕХА В БАНКОВСКОМ МЕНЕДЖМЕНТЕ
НИКОЛАЕВНА, КОНЯГИНА МАРИЯ, (2010)
- More ...