Regression Models under Competing Covariance Structures: A Bayesian Perspective
This paper develops Bayesian approaches to deal with linear elliptical regression models that differ in the covariance structure. A pretest method based on posterior model probabilities is compared with a pooling approach, and the data density is defined as a mixture of elliptical densities with weights that are unknown discrete parameters. An example with AR (1), MA (1) or uncorrelated errors is presented as an illustration of the ideas.
Year of publication: |
1993
|
---|---|
Authors: | OSIEWALSKI, Jacek ; STEEL, Mark F.J. |
Published in: |
Annales d'Economie et de Statistique. - École Nationale de la Statistique et de l'Admnistration Économique (ENSAE). - 1993, 32, p. 65-79
|
Publisher: |
École Nationale de la Statistique et de l'Admnistration Économique (ENSAE) |
Saved in:
Online Resource
Saved in favorites
Similar items by person
-
A Stochastic Frontier Analysis of Output Level and Growth in Poland and Western Economies
Koop, Gary, (2000)
-
Classical and Bayesian Inference Robustness in Multivariate Regression Models
Fernández, Carmen, (1997)
-
Modeling and Inference With n-Spherical Distributions
Fernández, Carmen, (1995)
- More ...