Zeroes of the Jones polynomial
We study the distribution of zeroes of the Jones polynomial VK(t) for a knot K. We have computed numerically the roots of the Jones polynomial for all prime knots with N⩽10 crossings, and found the zeroes scattered about the unit circle |t|=1 with the average distance to the circle approaching a nonzero value as N increases. For torus knots of the type (m,n) we show that all zeroes lie on the unit circle with a uniform density in the limit of either m or n→∞, a fact confirmed by our numerical findings. We have also elucidated the relation connecting the Jones polynomial with the Potts model, and used this relation to derive the Jones polynomial for a repeating chain knot with 3n crossings for general n. It is found that zeroes of its Jones polynomial lie on three closed curves centered about the points 1,i and −i. In addition, there are two isolated zeroes located one each near the points t±=e±2πi/3 at a distance of the order of 3−(n+2)/2. Closed-form expressions are deduced for the closed curves in the limit of n→∞.
Year of publication: |
2001
|
---|---|
Authors: | Wu, F.Y ; Wang, J |
Published in: |
Physica A: Statistical Mechanics and its Applications. - Elsevier, ISSN 0378-4371. - Vol. 296.2001, 3, p. 483-494
|
Publisher: |
Elsevier |
Saved in:
Online Resource
Saved in favorites
Similar items by person
-
How a Retailer Should Manipulate a Dominant Manufacturere's Perception of Market and Cost Parameters
Lau, AHL, (2008)
-
Analysis of duopoly price competition between WLAN providers
Kong, Z, (2009)
-
Understanding the key risks in construction projects in China
Zou, Patrick X. W., (2007)
- More ...