EconBiz - Find Economic Literature
    • Logout
    • Change account settings
  • A-Z
  • Beta
  • About EconBiz
  • News
  • Thesaurus (STW)
  • Academic Skills
  • Help
  •  My account 
    • Logout
    • Change account settings
  • Login
EconBiz - Find Economic Literature
Publications Events
Search options
Advanced Search history
My EconBiz
Favorites Loans Reservations Fines
    You are here:
  • Home
  • Search: person:"BALLINGS, M."
Narrow search

Narrow search

Year of publication
Subject
All
CRM 1 Customer Churn 1 Customer Retention 1 Data Augmentation 1 Length of customer event history 1 Pictorial Stimulus-Choice Data 1 Predictive Analytics 1 Time window 1 predictive customer churn model 1
more ... less ...
Online availability
All
Free 3
Type of publication
All
Book / Working Paper 3
Language
All
Undetermined 3
Author
All
BALLINGS, M. 3 POEL, D. VAN DEN 3 VERHAGEN, E. 1
Institution
All
Faculteit Economie en Bedrijfskunde, Universiteit Gent 3
Published in...
All
Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 3
Source
All
RePEc 3
Showing 1 - 3 of 3
Cover Image
Evaluating the Added Value of Pictorial Data for Customer Churn Prediction
BALLINGS, M.; POEL, D. VAN DEN; VERHAGEN, E. - Faculteit Economie en Bedrijfskunde, Universiteit Gent - 2013
The purpose of this paper is to evaluate whether pictorial data can improve customer churn prediction and, if so, which pictures are most important. We use Random Forest and five times twofold cross-validation to analyze how much pictorial stimulus-choice data increase the AUC and top decile...
Persistent link: https://www.econbiz.de/10011083192
Saved in:
Cover Image
The Relevant Length of Customer Event History for Churn Prediction: How long is long enough?
BALLINGS, M.; POEL, D. VAN DEN - Faculteit Economie en Bedrijfskunde, Universiteit Gent - 2012
The key question of this study is: How long should the length of customer event history be for customer churn prediction? While most studies in predictive churn modeling aim to improve models by data augmentation or algorithm improvement, this study focuses on a another dimension: time window...
Persistent link: https://www.econbiz.de/10011083171
Saved in:
Cover Image
Kernel Factory: An Ensemble of Kernel Machines
BALLINGS, M.; POEL, D. VAN DEN - Faculteit Economie en Bedrijfskunde, Universiteit Gent - 2012
We propose an ensemble method for kernel machines. The training data is randomly split into a number of mutually exclusive partitions defined by a row and column parameter. Each partition forms an input space and is transformed by a kernel function into a kernel matrix K. Subsequently, each K is...
Persistent link: https://www.econbiz.de/10011083181
Saved in:
A service of the
zbw
  • Sitemap
  • Plain language
  • Accessibility
  • Contact us
  • Imprint
  • Privacy

Loading...