EconBiz - Find Economic Literature
    • Logout
    • Change account settings
  • A-Z
  • Beta
  • About EconBiz
  • News
  • Thesaurus (STW)
  • Academic Skills
  • Help
  •  My account 
    • Logout
    • Change account settings
  • Login
EconBiz - Find Economic Literature
Publications Events
Search options
Advanced Search history
My EconBiz
Favorites Loans Reservations Fines
    You are here:
  • Home
  • Search: person:"Pázman, A."
Narrow search

Narrow search

Year of publication
Subject
All
Estimation theory 2 Schätztheorie 2 Theorie 2 Theory 2 Mathematical programming 1 Mathematische Optimierung 1
Online availability
All
Undetermined 1
Type of publication
All
Article 3
Type of publication (narrower categories)
All
Article in journal 2 Aufsatz in Zeitschrift 2
Language
All
English 2 Undetermined 1
Author
All
Pázman, Andrej 2 Müller, Christine H. 1 Pronzato, L. 1 Pázman, A. 1
Published in...
All
Metrika : international journal for theoretical and applied statistics 2 Statistics & Probability Letters 1
Source
All
ECONIS (ZBW) 2 RePEc 1
Showing 1 - 3 of 3
Cover Image
Applications of necessary and sufficient conditions for maximin efficient designs
Müller, Christine H.; Pázman, Andrej - In: Metrika : international journal for theoretical and … 48 (1998) 1, pp. 1-19
Persistent link: https://www.econbiz.de/10001255316
Saved in:
Cover Image
The density of the parameter estimators when the observations are distributed exponentially
Pázman, Andrej - In: Metrika : international journal for theoretical and … 44 (1996) 1, pp. 9-26
Persistent link: https://www.econbiz.de/10001204429
Saved in:
Cover Image
A Dirac-function method for densities of nonlinear statistics and for marginal densities in nonlinear regression
Pázman, A.; Pronzato, L. - In: Statistics & Probability Letters 26 (1996) 2, pp. 159-167
We consider new approximations for the marginal density of parameter estimates in nonlinear regression, and more generally for the density of any smooth scalar function G(y) with y normally distributed. These approximations are derived via a Dirac-function technique.
Persistent link: https://www.econbiz.de/10005254782
Saved in:
A service of the
zbw
  • Sitemap
  • Plain language
  • Accessibility
  • Contact us
  • Imprint
  • Privacy

Loading...