Matsuura, Shun; Kurata, Hiroshi - In: Statistical Papers 55 (2014) 3, pp. 853-870
A set of <InlineEquation ID="IEq1"> <EquationSource Format="TEX">$$n$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mrow> <mi>n</mi> </mrow> </math> </EquationSource> </InlineEquation>-principal points of a <InlineEquation ID="IEq2"> <EquationSource Format="TEX">$$p$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mrow> <mi>p</mi> </mrow> </math> </EquationSource> </InlineEquation>-dimensional distribution is an optimal <InlineEquation ID="IEq3"> <EquationSource Format="TEX">$$n$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mrow> <mi>n</mi> </mrow> </math> </EquationSource> </InlineEquation>-point-approximation of the distribution in terms of a squared error loss. It is in general difficult to derive an explicit expression of principal points. Hence, we may have to...</equationsource></equationsource></inlineequation></equationsource></equationsource></inlineequation></equationsource></equationsource></inlineequation>