Tsoukalas, A.; Mitsos, A. - In: Journal of Global Optimization 59 (2014) 2, pp. 633-662
McCormick (Math Prog 10(1):147–175, <CitationRef CitationID="CR23">1976</CitationRef>) provides the framework for convex/concave relaxations of factorable functions, via rules for the product of functions and compositions of the form <InlineEquation ID="IEq1"> <EquationSource Format="TEX">$$F\circ f$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mrow> <mi>F</mi> <mo>∘</mo> <mi>f</mi> </mrow> </math> </EquationSource> </InlineEquation>, where <InlineEquation ID="IEq2"> <EquationSource Format="TEX">$$F$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mi>F</mi> </math> </EquationSource> </InlineEquation> is a univariate function. Herein, the composition...</equationsource></equationsource></inlineequation></equationsource></equationsource></inlineequation></citationref>