Showing 1 - 10 of 13
This paper delineates the simultaneous impact of non-anticipated information on first and second moments of the intraday price process by including appropriate variables accounting for the news flow into both the mean and the variance function. This allows us to differentiate between the...
Persistent link: https://www.econbiz.de/10010297797
We introduce a regularization and blocking estimator for well-conditioned high-dimensional daily covariances using high-frequency data. Using the Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008a) kernel estimator, we estimate the covariance matrix block-wise and regularize it. A data-driven...
Persistent link: https://www.econbiz.de/10010303678
We propose a Nelson-Siegel type interest rate term structure model where the underlying yield factors follow autoregressive processes with stochastic volatility. The factor volatilities parsimoniously capture risk inherent to the term structure and are associated with the time-varying...
Persistent link: https://www.econbiz.de/10010303741
This paper delineates the simultaneous impact of non-anticipated information on mean and variance of the intraday return process by including appropriate variables accounting for the news flow into both the mean and the variance function. This allows us to differentiate between the consistent...
Persistent link: https://www.econbiz.de/10010324062
We propose a novel approach to model serially dependent positive-valued variables which realize a non-trivial proportion of zero outcomes. This is a typical phenomenon in financial time series observed at high frequencies, such as cumulated trading volumes. We introduce a flexible point-mass...
Persistent link: https://www.econbiz.de/10010308578
In this paper, we review the most common specifications of discrete-time stochastic volatility (SV) models and illustrate the major principles of corresponding Markov Chain Monte Carlo (MCMC) based statistical inference. We provide a hands-on ap proach which is easily implemented in empirical...
Persistent link: https://www.econbiz.de/10010263750
In this paper, we develop and apply Bayesian inference for an extended Nelson-Siegel (1987) term structure model capturing interest rate risk. The so-called Stochastic Volatility Nelson-Siegel (SVNS) model allows for stochastic volatility in the underlying yield factors. We propose a Markov...
Persistent link: https://www.econbiz.de/10010270702
We introduce a regularization and blocking estimator for well-conditioned high-dimensional daily covariances using high-frequency data. Using the Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008a) kernel estimator, we estimate the covariance matrix block-wise and regularize it. A data-driven...
Persistent link: https://www.econbiz.de/10010270808
Measuring and modeling financial volatility is the key to derivative pricing, asset allocation and risk management.The recent availability of high-frequency data allows for refined methods in this field.In particular, more precise measures for the daily or lower frequency volatility can be...
Persistent link: https://www.econbiz.de/10010274148
We propose a novel approach to model serially dependent positive-valued variables which realize a non-trivial proportion of zero outcomes. This is a typical phenomenon in financial time series observed on high frequencies, such as cumulated trading volumes or the time between potentially...
Persistent link: https://www.econbiz.de/10010281483