Showing 81 - 90 of 92
The basic structural time series model has been designed for the modelling and forecasting of seasonal economic time series. In this paper we explore a generalisation of the basic structural time series model in which the time-varying trigonometric terms associated with different seasonal...
Persistent link: https://www.econbiz.de/10011379642
We propose a new class of observation-driven time-varying parameter models for dynamic volatilities and correlations to handle time series from heavy-tailed distributions. The model adopts generalized autoregressive score dynamics to obtain a time-varying covariance matrix of the multivariate...
Persistent link: https://www.econbiz.de/10011380135
This paper proposes an up-to-date review of estimation strategies available for the Bayesian inference of GARCH-type models. The emphasis is put on a novel efficient procedure named AdMitIS. The methodology automatically constructs a mixture of Student-t distributions as an approximation to the...
Persistent link: https://www.econbiz.de/10011380465
A Bayesian dynamic compositional model is introduced that can deal with combining a large set of predictive densities. It extends the mixture of experts and the smoothly mixing regression models by allowing for combination weight dependence across models and time. A compositional model with...
Persistent link: https://www.econbiz.de/10012431874
Statistics Netherlands uses a state space model to estimate the Dutch unemployment by using monthly series about the labour force surveys (LFS). More accurate estimates of this variable can be obtained by including auxiliary information in the model, such as the univariate administrative series...
Persistent link: https://www.econbiz.de/10012434085
Persistent link: https://www.econbiz.de/10012436055
We propose a multiplicative dynamic factor structure for the conditional modelling of the variances of an N-dimensional vector of financial returns. We identify common and idiosyncratic conditional volatility factors. The econometric framework is based on an observation-driven time series model...
Persistent link: https://www.econbiz.de/10012591559
We assess the stability of the unemployment gap parameter using linear dynamic Phillips curve models for the United States. In this study, we allow the unemployment gap parameter to be time-varying such that we can monitor the importance of the Phillips curve over time. We consider different...
Persistent link: https://www.econbiz.de/10012665848
We introduce a mixed-frequency score-driven dynamic model for multiple time series where the score contributions from high-frequency variables are transformed by means of a mixed-data sampling weighting scheme. The resulting dynamic model delivers a flexible and easy-to-implement framework for...
Persistent link: https://www.econbiz.de/10011809978
A flexible predictive density combination is introduced for large financial data sets which allows for model set incompleteness. Dimension reduction procedures that include learning allocate the large sets of predictive densities and combination weights to relatively small subsets. Given the...
Persistent link: https://www.econbiz.de/10013332662