Showing 1 - 9 of 9
We develop a new parameter stability test against the alternative of observation driven generalized autoregressive score dynamics. The new test generalizes the ARCH-LM test of Engle (1982) to settings beyond time-varying volatility and exploits any autocorrelation in the likelihood scores under...
Persistent link: https://www.econbiz.de/10010229896
We propose a new class of observation-driven time-varying parameter models for dynamic volatilities and correlations to handle time series from heavy-tailed distributions. The model adopts generalized autoregressive score dynamics to obtain a time-varying covariance matrix of the multivariate...
Persistent link: https://www.econbiz.de/10011380135
Persistent link: https://www.econbiz.de/10009767006
Persistent link: https://www.econbiz.de/10009720702
Persistent link: https://www.econbiz.de/10009720703
We develop a new model for the multivariate covariance matrix dynamics based on daily return observations and daily realized covariance matrix kernels based on intraday data. Both types of data may be fat-tailed. We account for this by assuming a matrix-F distribution for the realized kernels,...
Persistent link: https://www.econbiz.de/10010364103
This paper has been accepted for publication in the 'Review of Economics and Statistics'.We propose a dynamic factor model for mixed-measurement and mixed-frequency panel data. In this framework time series observations may come from a range of families of parametric distributions, may be...
Persistent link: https://www.econbiz.de/10011383248
We propose a new model for dynamic volatilities and correlations of skewed and heavy-tailed data. Our model endows the Generalized Hyperbolic distribution with time-varying parameters driven by the score of the observation density function. The key novelty in our approach is the fact that the...
Persistent link: https://www.econbiz.de/10011386468
Persistent link: https://www.econbiz.de/10010191403