Showing 1 - 10 of 13
Many researchers seek factors that predict the cross-section of stock returns. The standard methodology sorts stocks according to their factor scores into quantiles and forms a corresponding long-short portfolio. Such a course of action ignores any information on the covariance matrix of stock...
Persistent link: https://www.econbiz.de/10012935115
Modeling and forecasting dynamic (or time-varying) covariance matrices has many important applications in finance, such as Markowitz portfolio selection. A popular tool to this end are multivariate GARCH models. Historically, such models did not perform well in large dimensions due to the...
Persistent link: https://www.econbiz.de/10012827099
These days, it is common practice to base inference about the coefficients in a hetoskedastic linear model on the ordinary least squares estimator in conjunction with using heteroskedasticity consistent standard errors. Even when the true form of heteroskedasticity is unknown, heteroskedasticity...
Persistent link: https://www.econbiz.de/10012968520
Second moments of asset returns are important for risk management and portfolio selection. The problem of estimating second moments can be approached from two angles: time series and the cross-section. In time series, the key is to account for conditional heteroskedasticity; a favored model is...
Persistent link: https://www.econbiz.de/10012968636
This paper deals with certain estimation problems involving the covariance matrix in large dimensions. Due to the breakdown of finite-dimensional asymptotic theory when the dimension is not negligible with respect to the sample size, it is necessary to resort to an alternative framework known as...
Persistent link: https://www.econbiz.de/10012970250
Markowitz (1952) portfolio selection requires an estimator of the covariance matrix of returns. To address this problem, we promote a nonlinear shrinkage estimator that is more flexible than previous linear shrinkage estimators and has just the right number of free parameters (that is, the...
Persistent link: https://www.econbiz.de/10012973579
This paper introduces a new method for deriving covariance matrix estimators that are decision-theoretically optimal within a class of nonlinear shrinkage estimators. The key is to employ large-dimensional asymptotics: the matrix dimension and the sample size go to infinity together, with their...
Persistent link: https://www.econbiz.de/10012974410
A key stated objective of the Australian Plain Packaging Act 2011 is to influence smoking prevalence, in particular of minors. We use the Roy Morgan Single Source (Australia) data set on minors, (that is, Australians aged 14 to 17 years) over the time period January 2001 to December 2013 to...
Persistent link: https://www.econbiz.de/10013056477
This paper establishes the first analytical formula for optimal nonlinear shrinkage of large-dimensional covariance matrices. We achieve this by identifying and mathematically exploiting a deep connection between nonlinear shrinkage and nonparametric estimation of the Hilbert transform of the...
Persistent link: https://www.econbiz.de/10012932617
Many econometric and data-science applications require a reliable estimate of the covariance matrix, such as Markowitz portfolio selection. When the number of variables is of the same magnitude as the number of observations, this constitutes a difficult estimation problem; the sample covariance...
Persistent link: https://www.econbiz.de/10012849284