Showing 1 - 8 of 8
We introduce a new dynamic clustering method for multivariate panel data char- acterized by time-variation in cluster locations and shapes, cluster compositions, and, possibly, the number of clusters. To avoid overly frequent cluster switching (flickering), we extend standard cross-sectional...
Persistent link: https://www.econbiz.de/10013552743
Persistent link: https://www.econbiz.de/10010233231
Persistent link: https://www.econbiz.de/10010233247
Persistent link: https://www.econbiz.de/10011349820
We investigate the dynamic properties of systematic default risk conditions for firms in different countries, industries and rating groups. We use a high-dimensional nonlinear non-Gaussian state space model to estimate common components in corporate defaults in a 41 country sample between...
Persistent link: https://www.econbiz.de/10011618479
We address the question to what extent a central bank can de-risk its balance sheet by unconventional monetary policy operations. To this end, we propose a novel risk measurement framework to empirically study the time-variation in central bank portfolio credit risks associated with such...
Persistent link: https://www.econbiz.de/10011959298
We propose a dynamic semi-parametric framework to study time variation in tail parameters. The framework builds on the Generalized Pareto Distribution (GPD) for modeling peaks over thresholds as in Extreme Value Theory, but casts the model in a conditional framework to allow for time-variation...
Persistent link: https://www.econbiz.de/10012429187
We propose a dynamic clustering model for uncovering latent time-varying group structures in multivariate panel data. The model is dynamic in three ways. First, the cluster location and scale matrices are time-varying to track gradual changes in cluster characteristics over time. Second, all...
Persistent link: https://www.econbiz.de/10012594269