Showing 1 - 4 of 4
The procedures of estimating prediction intervals for ARMA processes can be divided into model based methods and empirical methods. Model based methods require knowledge of the model and the underlying innovation distribution. Empirical methods are based on the sample forecast errors. In this...
Persistent link: https://www.econbiz.de/10010324076
The choice of a smoothing parameter or bandwidth is crucial when applying non- parametric regression estimators. In nonparametric mean regression various meth- ods for bandwidth selection exists. But in nonparametric quantile regression band- width choice is still an unsolved problem. In this...
Persistent link: https://www.econbiz.de/10010324080
The procedures of estimating prediction intervals for ARMA processes can be divided into model based methods and empirical methods. Model based methods require knowledge of the model and the underlying innovation distribution. Empirical methods are based on the sample forecast errors. In this...
Persistent link: https://www.econbiz.de/10011544448
The choice of a smoothing parameter or bandwidth is crucial when applying nonparametric regression estimators. In nonparametric mean regression various methods for bandwidth selection exists. But in nonparametric quantile regression bandwidth choice is still an unsolved problem. In this paper a...
Persistent link: https://www.econbiz.de/10011544543