Showing 1 - 10 of 24
Measuring dependence in a multivariate time series is tantamount to modelling its dynamic structure in space and time. In the context of a multivariate normally distributed time series, the evolution of the covariance (or correlation) matrix over time describes this dynamic. A wide variety of...
Persistent link: https://www.econbiz.de/10003402279
High-dimensional regression problems which reveal dynamic behavior are typically analyzed by time propagation of a few number of factors. The inference on the whole system is then based on the low-dimensional time series analysis. Such highdimensional problems occur frequently in many different...
Persistent link: https://www.econbiz.de/10003633687
This paper offers a new method for estimation and forecasting of the linear and nonlinear time series when the stationarity assumption is violated. Our general local parametric approach particularly applies to general varying-coefficient parametric models, such as AR or GARCH, whose coefficients...
Persistent link: https://www.econbiz.de/10003635965
Risk management technology applied to high dimensional portfolios needs simple and fast methods for calculation of Value-at-Risk (VaR). The multivariate normal framework provides a simple off-the-shelf methodology but lacks the heavy tailed distributional properties that are observed in data. A...
Persistent link: https://www.econbiz.de/10003324161
We consider the component analysis problem for a regression model with an additive structure. The problem is to check the hypothesis of linearity for each component without specifying the structure of the remaining components. In this paper we show that under mild conditions on the design and...
Persistent link: https://www.econbiz.de/10009658471
We develop inference tools in a semiparametric regression model with missing response data. A semiparametric regression imputation estimator and an empirical likelihood based one for the mean of the response variable are defined. Both the estimators are proved to be asymptotically normal, with...
Persistent link: https://www.econbiz.de/10009620774
In this paper, linear errors-in-response models are considered in the presence of validation data on the responses. A semiparametric dimension reduction technique is employed to define an estimator of β with asymptotic normality, the estimated empirical loglikelihoods and the adjusted empirical...
Persistent link: https://www.econbiz.de/10009627279
An extended single-index model is considered when responses are missing at random. A three-step estimation procedure is developed to define an estimator for the single index parameter vector by a joint estimating equation. The proposed estimator is shown to be asymptotically normal. An iterative...
Persistent link: https://www.econbiz.de/10010225739
Conditional quantile curves provide a comprehensive picture of a response contingent on explanatory variables. Quantile regression is a technique to estimate such curves. In a flexible modeling framework, a specific form of the quantile is not a priori fixed. Indeed, the majority of applications...
Persistent link: https://www.econbiz.de/10008772553
Let a process SI , ... ,ST obey the conditionally heteroskedastic equation St = Vt Et whcrc Et is a random noise and Vt is the volatility coefficient which in turn obeys an autoregression type equation log v t = w + a S t- l + nt with an additional noise nt. We consider the situation which the...
Persistent link: https://www.econbiz.de/10009582392