Showing 1 - 10 of 23
Persistent link: https://www.econbiz.de/10011755312
A Bayesian nonparametric predictive model is introduced to construct time-varying weighted combinations of a large set of predictive densities. A clustering mechanism allocates these densities into a smaller number of mutually exclusive subsets. Using properties of Aitchinson's geometry of the...
Persistent link: https://www.econbiz.de/10011403538
This paper presents the Matlab package DeCo (Density Combination) which is based on the paper by Billio et al. (2013) where a constructive Bayesian approach is presented for combining predictive densities originating from different models or other sources of information. The combination weights...
Persistent link: https://www.econbiz.de/10010326164
A flexible forecast density combination approach is introduced that can deal with large data sets. It extends the mixture of experts approach by allowing for model set incompleteness and dynamic learning of combination weights. A dimension reduction step is introduced using a sequential...
Persistent link: https://www.econbiz.de/10012114778
A flexible predictive density combination is introduced for large financial data sets which allows for model set incompleteness. Dimension reduction procedures that include learning allocate the large sets of predictive densities and combination weights to relatively small subsets. Given the...
Persistent link: https://www.econbiz.de/10013356509
A Bayesian dynamic compositional model is introduced that can deal with combining a large set of predictive densities. It extends the mixture of experts and the smoothly mixing regression models by allowing for combination weight dependence across models and time. A compositional model with...
Persistent link: https://www.econbiz.de/10012605982
This paper presents the MATLAB package DeCo (density combination) which is based on the paper by Billio, Casarin, Ravazzolo, and van Dijk (2013) where a constructive Bayesian approach is presented for combining predictive densities originating from different models or other sources of...
Persistent link: https://www.econbiz.de/10012143849
A Bayesian nonparametric predictive model is introduced to construct time-varying weighted combinations of a large set of predictive densities. A clustering mechanism allocates these densities into a smaller number of mutually exclusive subsets. Using properties of the Aitchinson's geometry of...
Persistent link: https://www.econbiz.de/10012143868
A flexible forecast density combination approach is introduced that can deal with large data sets. It extends the mixture of experts approach by allowing for model set incompleteness and dynamic learning of combination weights. A dimension reduction step is introduced using a sequential...
Persistent link: https://www.econbiz.de/10012143944
Short memory models contaminated by level shifts have similar long-memory features as fractionally integrated processes. This makes it hard to verify whether the true data generating process is a pure fractionally integrated process when employing standard estimation methods based on the...
Persistent link: https://www.econbiz.de/10011445294