Showing 1 - 5 of 5
In many applications, covariates are not observed but have to be estimated from data. We outline some regression-type models where such a situation occurs and discuss estimation of the regression function in this context.We review theoretical results on how asymptotic properties of nonparametric...
Persistent link: https://www.econbiz.de/10010318739
In this paper, we study a general class of semiparametric optimization estimators of a vector-valued parameter. The criterion function depends on two types of infinite-dimensional nuisance parameters: a conditional expectation function that has been estimated nonparametrically using generated...
Persistent link: https://www.econbiz.de/10010281571
We analyze the properties of non- and semiparametric estimation procedures involving nonparametric regression with generated covariates. Such estimators appear in numerous econometric applications, including nonparametric estimation of simultaneous equation models, sample selection models,...
Persistent link: https://www.econbiz.de/10010281590
In this paper, we propose a method to evaluate the effect of a counterfactual change in the unconditional distribution of a single covariate on the unconditional distribution of an outcome variable of interest. Both fixed and infinitesimal changes are considered. We show that such effects are...
Persistent link: https://www.econbiz.de/10010282458
Estimators of average treatment effects under unconfounded treatment assignment are known to become rather imprecise if there is limited overlap in the covariate distributions between the treatment groups. But such limited overlap can also have a detrimental effect on inference, and lead for...
Persistent link: https://www.econbiz.de/10010481652