Showing 1 - 10 of 266
In this article we examine how model selection in neural networks can be guided by statistical procedures such as hypotheses tests, information criteria and cross validation. The application of these methods in neural network models is discussed, paying attention especially to the identification...
Persistent link: https://www.econbiz.de/10010299652
In this article we examine how model selection in neural networks can be guided by statistical procedures such as hypotheses tests, information criteria and cross validation. The application of these methods in neural network models is discussed, paying attention especially to the identification...
Persistent link: https://www.econbiz.de/10011622013
In Perez-Amaral, Gallo, and White (2003), the authors proposed an automatic predictive modelling tool called Relevant Transformation of the Inputs Network Approach (RETINA). It is designed to embody flexibility (using nonlinear transformations of the predictors of interest), selective search...
Persistent link: https://www.econbiz.de/10005812867
Some convenient limit properties of usual information criteria are given for cointegrating rank selection. Allowing for a nonparametric short memory component and using a reduced rank regression with only a single lag, standard information criteria are shown to be weakly consistent in the choice...
Persistent link: https://www.econbiz.de/10005039557
Reduced rank regression (RRR) models with time varying heterogeneity are considered. Standard information criteria for selecting cointegrating rank are shown to be weakly consistent in semiparametric RRR models in which the errors have general nonparametric short memory components and shifting...
Persistent link: https://www.econbiz.de/10005196029
A new method, called relevant transformation of the inputs network approach (RETINA) is proposed as a tool for model building and selection. It is designed to improve on some of the shortcomings of neural networks. RETINA has the flexibility of neural network models, the concavity of the...
Persistent link: https://www.econbiz.de/10005731545
This paper considers information criteria as model evaluation tools for nonlinear threshold models. Results concerning the consistency of information criteria in selecting the lag order of linear autoregressive models are extended to nonlinear autoregressive threshold models. Extensive Monte...
Persistent link: https://www.econbiz.de/10005647350
Structural vector autoregressive (SVAR) models have emerged as a dominant research strategy in empirical macroeconomics, but suffer from the large number of parameters employed and the resulting estimation uncertainty associated with their impulse responses. In this paper we propose...
Persistent link: https://www.econbiz.de/10005227201
In most of the empirical research on capital markets, stock market indexes are used as proxies for the aggregate market development. In previous work we found that a particular market segment might be less efficient than the whole market and hence easier to forecast. In this paper we extend the...
Persistent link: https://www.econbiz.de/10010291063
In this paper the performance of information criteria and a test against SETAR nonlinearity for outlier contaminated time series are investigated. Additive outliers can seriously influence the properties of the underlying time series and hence of linearity tests, resulting in spurious test...
Persistent link: https://www.econbiz.de/10011488709