Showing 1 - 10 of 207
Power law or generalized polynomial regressions with unknown real-valued exponents and coefficients, and weakly dependent errors, are considered for observations over time, space or space-time. Consistency and asymptotic normality of nonlinear least squares estimates of the parameters are...
Persistent link: https://www.econbiz.de/10008859689
Nonparametric regression with spatial, or spatio-temporal, data is considered. The conditional mean of a dependent variable, given explanatory ones, is a nonparametric function, while the conditional covariance reflects spatial correlation. Conditional heteroscedasticity is also allowed, as well...
Persistent link: https://www.econbiz.de/10008906533
Panel data, whose series length T is large but whose cross-section size N need not be, are assumed to have a common time trend. The time trend is of unknown form, the model includes additive, unknown, individual-specific components, and we allow for spatial or other cross-sectional dependence...
Persistent link: https://www.econbiz.de/10008906534
Persistent link: https://www.econbiz.de/10008909188
Persistent link: https://www.econbiz.de/10009531796
Persistent link: https://www.econbiz.de/10001699200
Persistent link: https://www.econbiz.de/10002034300
Persistent link: https://www.econbiz.de/10003332165
Persistent link: https://www.econbiz.de/10003401899
We consider cross-sectional data that exhibit no spatial correlation, but are feared to be spatially dependent. We demonstrate that a spatial version of the stochastic volatility model of financial econometrics, entailing a form of spatial autoregression, can explain such behaviour. The...
Persistent link: https://www.econbiz.de/10003765993