Showing 1 - 10 of 39,181
Persistent link: https://www.econbiz.de/10012373015
The predictive likelihood is of particular relevance in a Bayesian setting when the purpose is to rank models in a forecast comparison exercise. This paper discusses how the predictive likelihood can be estimated for any subset of the observable variables in linear Gaussian state-space models...
Persistent link: https://www.econbiz.de/10010412361
Persistent link: https://www.econbiz.de/10012991184
This paper develops a sampling algorithm for bandwidth estimation in a nonparametric regression model with continuous and discrete regressors under an unknown error density. The error density is approximated by the kernel density estimator of the unobserved errors, while the regression function...
Persistent link: https://www.econbiz.de/10011506243
In several scientific fields, like bioinformatics, financial and macro-economics, important theoretical and practical issues exist that involve multimodal data distributions. We propose a Bayesian approach using mixtures distributions to approximate accurately such data distributions. Shape and...
Persistent link: https://www.econbiz.de/10012431876
Persistent link: https://www.econbiz.de/10012137901
In econometrics, Autoregressive Conditional Duration (ACD) models use high-frequency economic or financial duration data, which mostly exhibit irregular time intervals. The ACD model is widely used to examine the duration of transaction volume and duration of price variations in stock markets....
Persistent link: https://www.econbiz.de/10014581582
A Bayesian dynamic compositional model is introduced that can deal with combining a large set of predictive densities. It extends the mixture of experts and the smoothly mixing regression models by allowing for combination weight dependence across models and time. A compositional model with...
Persistent link: https://www.econbiz.de/10012431874
Persistent link: https://www.econbiz.de/10012384654
A flexible predictive density combination is introduced for large financial data sets which allows for model set incompleteness. Dimension reduction procedures that include learning allocate the large sets of predictive densities and combination weights to relatively small subsets. Given the...
Persistent link: https://www.econbiz.de/10013332662