Showing 1 - 10 of 201
In nonparametric curve estimation, the smoothing parameter is critical for performance. In order to estimate the hazard rate, we compare nearest neighbor selectors that minimize the quadratic, the Kullback-Leibler, and the uniform loss. These measures result in a rule of thumb, a...
Persistent link: https://www.econbiz.de/10010300666
We provide Markov chain Monte Carlo (MCMC) algorithms for computing the bandwidth matrix for multivariate kernel density estimation. Our approach is based on treating the elements of the bandwidth matrix as parameters to be estimated, which we do by optimizing the likelihood cross-validation...
Persistent link: https://www.econbiz.de/10005149069
In nonparametric curve estimation, the smoothing parameter is critical for performance. In order to estimate the hazard rate, we compare nearest neighbor selectors that minimize the quadratic, the Kullback-Leibler, and the uniform loss. These measures result in a rule of thumb, a...
Persistent link: https://www.econbiz.de/10009216894
A bandwidth selector for local polynomial fitting is proposed following the bootstrap idea, which is just a double smoothing bandwidth selector with a bootstrap variance estimator, defined as the mean squared residuals of a pilot estimate. No simulated resampling is required in this context,...
Persistent link: https://www.econbiz.de/10010397967
A data-driven optimal decomposition of time series with trend-cyclical and seasonal components as well as the estimation of derivatives of the trend-cyclical is considered. The time series is smoothed by locally weighted regression with polynomials and trigonometric functions as local...
Persistent link: https://www.econbiz.de/10010398003
This paper considers estimation of the regression function and its derivatives in nonparametric regression with fractional time series errors. We focus on investigating the properties of a kernel dependent function V (delta) in the asymptotic variance and finding closed form formula of it, where...
Persistent link: https://www.econbiz.de/10010263412
We consider parameter estimation for time-dependent locally stationary long-memory processes. The asymptotic distribution of an estimator based on the local infinite autoregressive representation is derived, and asymptotic formulas for the mean squared error of the estimator, and the...
Persistent link: https://www.econbiz.de/10010266947
We consider the problem of choosing two bandwidths simultaneously for estimating the difference of two functions at given points. When the asymptotic approximation of the mean squared error (AMSE) criterion is used, we show that minimisation problem is not well-defined when the sign of the...
Persistent link: https://www.econbiz.de/10010318701
This paper focuses on developing a new data-driven procedure for decomposing seasonal time series based on local regression. Formula of the asymptotic optimal bandwidth hA in the current context is given. Methods for estimating the unknowns in hA are investigated. A data-driven algorithm for...
Persistent link: https://www.econbiz.de/10010324043
In this paper data-driven algorithms for fitting SEMIFAR models (Beran, 1999) are proposed. The algorithms combine the data-driven estimation of the nonparamet- ric trend and maximum likelihood estimation of the parameters. Convergence and asymptotic properties of the proposed algorithms are...
Persistent link: https://www.econbiz.de/10010324077