Showing 1 - 10 of 20,160
We investigate a class of semiparametric ARCH(∞) models that includes as a special case the partially nonparametric (PNP) model introduced by Engle and Ng (1993) and which allows for both flexible dynamics and flexible function form with regard to the 'news impact' function. We propose an...
Persistent link: https://www.econbiz.de/10011071447
Let r (x, z) be a function that, along with its derivatives, can be consistently estimated nonparametrically. This paper discusses identification and consistent estimation of the unknown functions H, M, G and F, where r (x, z) = H [M (x, z)] and M (x, z) = G(x) + F (z). An estimation algorithm...
Persistent link: https://www.econbiz.de/10011071234
Let r(x,z) be a function that, along with its derivatives, can be consistently estimated nonparametrically. This paper discusses identification and consistent estimation of the unknown functions H, M, G and F, where r(x, z) = H[M (x, z)] and M(x,z) = G(x) + F(z). An estimation algorithm is...
Persistent link: https://www.econbiz.de/10005074072
In this paper, we analyze the nonparametric part of a partially linear model when the covariates in parametric and non-parametric parts are subject to measurement errors. Based on a two-stage semi-parametric estimate, we construct a uniform con dence surface of the multivariate function for...
Persistent link: https://www.econbiz.de/10011531900
Su and Jin (2010) develop for partially linear spatial autoregressive (PL-SAR) model a profile quasimaximum likelihood based estimation procedure. More recently, Su (2011) proposes for this model a semiparametric GMM estimator. However, both of them can be computationally challenging for applied...
Persistent link: https://www.econbiz.de/10009228671
In this paper, we analyze the nonparametric part of a partially linear model when the covariates in parametric and non-parametric parts are subject to measurement errors. Based on a two-stage semi-parametric estimate, we construct a uniform con dence surface of the multivariate function for...
Persistent link: https://www.econbiz.de/10011518796
This paper proposes a fully nonparametric kernel method to account for observed covariates in regression discontinuity designs (RDD), which may increase precision of treatment effect estimation. It is shown that conditioning on covariates reduces the asymptotic variance and allows estimating the...
Persistent link: https://www.econbiz.de/10011760113
This paper considers a nonparametric regression model for cross-sectional data in the presence of common shocks. Common shocks are allowed to be very general in nature; they do not need to be finite dimensional with a known (small) number of factors. I investigate the properties of the...
Persistent link: https://www.econbiz.de/10011568282
This paper develops methodology for nonparametric estimation of a polarization measure due to Anderson (2004) and Anderson, Ge, and Leo (2006) based on kernel estimation techniques. We give the asymptotic distribution theory of our estimator, which in some cases is nonstandard due to a boundary...
Persistent link: https://www.econbiz.de/10010288407
We propose a modification of kernel time series regression estimators that improves efficiency when the innovation process is autocorrelated. The procedure is based on a pre-whitening transformation of the dependent variable that has to be estimated from the data. We establish the asymptotic...
Persistent link: https://www.econbiz.de/10010928799