Showing 1 - 10 of 62
We study a deterministic linear-quadratic (LQ) control problem over an infinite horizon, and develop a general apprach to the problem based on semi-definite programming (SDP)and related duality analysis. This approach allows the control cost matrix R to be non-negative (semi-definite), a case...
Persistent link: https://www.econbiz.de/10010837813
We study stochastic linear--quadratic (LQ) optimal control problems over an infinite horizon, allowing the cost matrices to be indefinite. We develop a systematic approach based on semidefinite programming (SDP). A central issue is the stability of the feedback control; and we show this can be...
Persistent link: https://www.econbiz.de/10008570636
We study disclosure of information about the multidimensional state of the world when uninformed receivers' actions affect the sender's utility. Given a disclosure rule, the receivers form an expectation about the state following each message. Under the assumption that the sender's expected...
Persistent link: https://www.econbiz.de/10010332526
In this paper, we develop various calculus rules for general smooth matrix-valued functions and for the class of matrix convex (or concave) functions first introduced by Loewner and Kraus in 1930s. Then we use these calculus rules and the matrix convex function -log X to study a new notion of...
Persistent link: https://www.econbiz.de/10004969823
A basic closed semialgebraic subset of Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb...
Persistent link: https://www.econbiz.de/10014501895
In the current paper, we introduce a new calibration methodology for the LIBOR market model driven by LIBOR additive processes based in an inverse problem. This problem can be splitted in the calibration of the continuous and discontinuous part, linking each part of the problem with at-the-money...
Persistent link: https://www.econbiz.de/10005190176
In this paper we generalize the primal--dual cone affine scaling algorithm of Sturm and Zhang to semidefinite programming. We show in this paper that the underlying ideas of the cone affine scaling algorithm can be naturely applied to semidefinite programming, resulting in a new algorithm....
Persistent link: https://www.econbiz.de/10005209469
In this paper we study the properties of the analytic central path of a semidefinite programming problem under perturbation of a set of input parameters. Specifically, we analyze the behavior of solutions on the central path with respect to changes on the right hand side of the constraints,...
Persistent link: https://www.econbiz.de/10005281871
In this paper we study the properties of the analytic central path of asemidefinite programming problem under perturbation of a set of inputparameters. Specifically, we analyze the behavior of solutions on the centralpath with respect to changes on the right hand side of the...
Persistent link: https://www.econbiz.de/10010324706
In this paper we generalize the primal--dual cone affine scaling algorithm of Sturm and Zhang to semidefinite programming.We show in this paper that the underlying ideas of the cone affine scaling algorithm can be naturely applied to semidefiniteprogramming, resulting in a new algorithm....
Persistent link: https://www.econbiz.de/10010325628