Showing 1 - 10 of 133
In this paper a robust data-driven procedure for decomposing seasonal time series based on a generalized Berlin Method (BV, Berliner Verfahren) as proposed by Heiler and Michels (1994) is discussed. The basic robust algorithm used here is an adaptation of the LOWESS (LOcally Weighted Scatterplot...
Persistent link: https://www.econbiz.de/10011543797
A bandwidth selector for local polynomial fitting is proposed following the bootstrap idea, which is just a double smoothing bandwidth selector with a bootstrap variance estimator, defined as the mean squared residuals of a pilot estimate. No simulated resampling is required in this context,...
Persistent link: https://www.econbiz.de/10009675761
A data-driven optimal decomposition of time series with trend-cyclical and seasonal components as well as the estimation of derivatives of the trend-cyclical is considered. The time series is smoothed by locally weighted regression with polynomials and trigonometric functions as local...
Persistent link: https://www.econbiz.de/10009580498
The problem of selecting bandwidth for nonparametric regression is investigated. The methodology used here is a double-smoothing procedure with data-driven pilot bandwidths. After giving an extension of the asymptotic result of Hardle, Hall and Marron (1992) by transfering the ideas of Jones,...
Persistent link: https://www.econbiz.de/10009580499
Persistent link: https://www.econbiz.de/10001485227
Prediction in time series models with a trend requires reliable estimation of the trend function at the right end of the observed series. Local polynomial smoothing is a suitable tool because boundary corrections are included implicitly. However, outliers may lead to unreliable estimates, if...
Persistent link: https://www.econbiz.de/10009783567
Recent results on so-called SEMIFAR models introduced by Beran (1997) are discussed. The nonparametric deterministic trend is estimated by a kernel method. The differencing and fractional differencing parameters as well as the autoregressive coefficients are estimated by an approximate maximum...
Persistent link: https://www.econbiz.de/10009793259
In this paper data-driven algorithms for fitting SEMIFAR models (Beran, 1999) are proposed. The algorithms combine the data-driven estimation of the nonparametric trend and maximum likelihood estimation of the parameters. For selecting the bandwidth, the proposal of Beran and Feng (1999) based...
Persistent link: https://www.econbiz.de/10011543365
The distinction between stationarity, difference stationarity, deterministic trends as well as between short- and long-range dependence has a major impact on statistical conclusions, such as confidence intervals for population quantities or point and interval forecasts. In this paper, recent...
Persistent link: https://www.econbiz.de/10011543928
Prediction in time series models with a trend requires reliable estimation of the trend function at the right end of the observed series. Local polynomial smoothing is a suitable tool because boundary corrections are included implicitly. However, outliers may lead to unreliable estimates, if...
Persistent link: https://www.econbiz.de/10011544323