Showing 1 - 10 of 12
Ensemble prediction systems aim to account for uncertainties of initial conditions and model error. Ensemble forecasting is sometimes viewed as a method of obtaining (objective) probabilistic forecasts. How is one to judge the quality of an ensemble at forecasting a system? The probability that...
Persistent link: https://www.econbiz.de/10009440317
Quantitative modeling of risk and hazard from flooding involves decisions regarding the choice of model and goal of the modeling exercise, expressed by some measure of performance. This paper shows how the subjectivity in the choices of performance measures and observation sets used for model...
Persistent link: https://www.econbiz.de/10009433554
Operational flood forecasting requires accurate forecasts with a suitable lead time, in order to be able to issue appropriate warnings and take appropriate emergency actions. Recent improvements in both flood plain characterization and computational capabilities have made the use of distributed...
Persistent link: https://www.econbiz.de/10009433556
Pharmacokinetic studies are commonly analyzed using a two-stage approach where the first stage involves estimation of pharmacokinetic parameters for each subject separately and the second stage uses the individual parameter estimates for statistical inference. This two-stage approach is not...
Persistent link: https://www.econbiz.de/10009433399
We consider the problem of semi-parametric regression modelling when the data consist of a collection of short time series for which measurements within series are correlated. The objective is to estimate a regression function of the form E[Y(t) | x] =x'ß+μ(t), where μ(.) is an arbitrary,...
Persistent link: https://www.econbiz.de/10009433470
Marginal models for multivariate binary data permit separate modelling of the relationship of the response with explanatory variables, and the association between pairs of responses. When the former is the scientific focus, a first-order generalized estimating equation method (Liang & Zeger,...
Persistent link: https://www.econbiz.de/10009433471
The paper compares non-parametric (design-based) and parametric (model-based) approaches to the analysis of data in the form of replicated spatial point patterns in two or more experimental groups. Basic questions for data of this kind concern estimating the properties of the underlying spatial...
Persistent link: https://www.econbiz.de/10009433516
Stone's isotonic regression method for analysing count data to estimate disease risk in relation to a point source of environmental pollution is now routinely used. This paper develops the corresponding procedure for case-control data consisting of the locations of individual cases with controls...
Persistent link: https://www.econbiz.de/10009433520
A common problem in environmental epidemiology is the estimation and mapping of spatial variation in disease risk. In this paper we analyse data from the Walsall District Health Authority, UK, concerning the spatial distributions of cancer cases compared with controls sampled from the population...
Persistent link: https://www.econbiz.de/10009433589
This paper describes a technique for computing approximate maximum pseudolikelihood estimates of the parameters of a spatial point process. The method is an extension of Berman & Turner's (1992) device for maximizing the likelihoods of inhomogeneous spatial Poisson processes. For a very wide...
Persistent link: https://www.econbiz.de/10009433623