Showing 1 - 10 of 216
Persistent link: https://www.econbiz.de/10011880091
A controlled clinical trial was conducted to investigate the efficacy effect of a chemical compound in the treatment of Premenstrual Dysphoric Disorder (PMDD). The data from the trial showed a non-monotone pattern of missing data and an ante-dependence covariance structure. A new analytical...
Persistent link: https://www.econbiz.de/10005458244
Researchers often impute continuous variables under an assumption of normality–yet many incomplete variables are skewed. We find that imputing skewed continuous variables under a normal model can lead to bias. The bias is usually mild for popular estimands such as means, standard...
Persistent link: https://www.econbiz.de/10011136708
Clustered data arise in many settings, particularly within the social and biomedical sciences. For example, multiple-source reports are commonly collected in child and adolescent psychiatric epidemiologic studies where researchers use various informants (for instance, parents and adolescents) to...
Persistent link: https://www.econbiz.de/10011105649
Widely used methods for analyzing missing data can be biased in small samples. To understand these biases, we evaluate in detail the situation where a small univariate normal sample, with values missing at random, is analyzed using either observed-data maximum likelihood (ML) or multiple...
Persistent link: https://www.econbiz.de/10010789573
Missing data are common wherever statistical methods are applied in practice. They present a problem in that they require that additional assumptions be made about the mechanism leading to the incompleteness of the data. By incorporating two models for the missing data process, doubly robust...
Persistent link: https://www.econbiz.de/10010871370
Variable selection has been suggested for Random Forests to improve data prediction and interpretation. However, the basic element, i.e. variable importance measures, cannot be computed straightforward when there are missing values in the predictor variables. Possible solutions are multiple...
Persistent link: https://www.econbiz.de/10010906927
Multiple imputation is one of the most highly recommended procedures for dealing with missing data. However, to date little attention has been paid to methods for combining the results from principal component analyses applied to a multiply imputed data set. In this paper we propose Generalized...
Persistent link: https://www.econbiz.de/10010950404
Incomplete data is a common complication in applied research. In this study, we use simulation to compare two approaches to the multiple imputation of a continuous predictor: multiple imputation through chained equations and multivariate normal imputation. This study extends earlier work by...
Persistent link: https://www.econbiz.de/10011002436
A new database called the World Resource Table is constructed in this study. Missing values are known to produce complications when constructing global databases. This study provides a solution for applying multiple imputation techniques and estimates the global environmental Kuznets curve (EKC)...
Persistent link: https://www.econbiz.de/10010994481