Showing 1 - 10 of 19
In a bonus-malus system in car insurance, the bonus class of a customer is updated from one year to the next as a function of the current class and the number of claims in the year (assumed Poisson). Thus the sequence of classes of a customer in consecutive years forms a Markov chain, and most...
Persistent link: https://www.econbiz.de/10010338093
Persistent link: https://www.econbiz.de/10013440228
Persistent link: https://www.econbiz.de/10012696890
Persistent link: https://www.econbiz.de/10012058923
Persistent link: https://www.econbiz.de/10013367850
For a random walk with negative mean and heavy-tailed increment distribution F, it is well known that under suitable subexponential assumptions, the distribution [pi] of the maximum has a tail [pi](x,[infinity]) which is asymptotically proportional to . We supplement here this by a local result...
Persistent link: https://www.econbiz.de/10005074680
Let (Y1,...,Yn) have a joint n-dimensional Gaussian distribution with a general mean vector and a general covariance matrix, and let , Sn=X1+...+Xn. The asymptotics of as n--[infinity] are shown to be the same as for the independent case with the same lognormal marginals. In particular, for...
Persistent link: https://www.econbiz.de/10005074701
We show how, from a single simulation run, to estimate the ruin probabilities and their sensitivities (derivatives) in a classic insurance risk model under various distributions of the number of claims and the claim size. Similar analysis is given for the tail probabilities of the accumulated...
Persistent link: https://www.econbiz.de/10009197952
We study the structure of point processes N with the property that the vary in a finite-dimensional space where [theta]t is the shift and the [sigma]-field generated by the counting process up to time t. This class of point processes is strictly larger than Neuts' class of Markovian arrival...
Persistent link: https://www.econbiz.de/10008872734
For risk processes with a general stationary input, a representation formula of ladder height distributions is proved which includes some additional information on process behaviour at the ladder epoch. The proof is short and probabilistic, and utilizes time reversal, occupation measures and...
Persistent link: https://www.econbiz.de/10008873703