Showing 1 - 4 of 4
It is well known that a one-step scoring estimator that starts from any N^{1/2}-consistent estimator has the same first-order asymptotic efficiency as the maximum likelihood estimator. This paper extends this result to k-step estimators and test statistics for k = 1, higher-order asymptotic...
Persistent link: https://www.econbiz.de/10004990703
This paper establishes the asymptotic distribution of extremum estimators when the true parameter lies on the boundary of the parameter space. The boundary may be linear, curved, and/or kinked. The asymptotic distribution is a function of a multivariate normal distribution in models without...
Persistent link: https://www.econbiz.de/10004990737
In this paper we introduce a family of minimum distance from independence estimators, suggested by Manski's minimum mean square from independence estimator. We establish strong consistency, asymptotic normality and consistency of resampling estimates of the distribution and variance of these...
Persistent link: https://www.econbiz.de/10005593437
This paper establishes the higher-order equivalence of the k-step bootstrap, introduced recently by Davidson and MacKinnon (1999a), and the standard bootstrap. The k-step bootstrap is a very attractive alternative computationally to the standard bootstrap for statistics based on nonlinear...
Persistent link: https://www.econbiz.de/10005593591