Showing 1 - 10 of 85
We show that the use of correlations for modeling dependencies may lead to counterintuitive behavior of risk measures, such as Value-at-Risk (VaR) and Expected Short- fall (ES), when the risk of very rare events is assessed via Monte-Carlo techniques. The phenomenon is demonstrated for mixture...
Persistent link: https://www.econbiz.de/10010958774
Abstract. We show that the use of correlations for modeling dependencies may lead to counterintuitive behavior of risk measures, such as Value-at-Risk (VaR) and Expected Short- fall (ES), when the risk of very rare events is assessed via Monte-Carlo techniques. The phenomenon is demonstrated for...
Persistent link: https://www.econbiz.de/10005007630
Assumptions about the dynamic and distributional behavior of risk factors are crucial for the construction of optimal portfolios and for risk assessment. Although asset returns are generally characterized by conditionally varying volatilities and fat tails, the normal distribution with constant...
Persistent link: https://www.econbiz.de/10010958549
Empirical evidence suggests that asset returns correlate more strongly in bear markets than conventional correlation estimates imply. We propose a method for determining complete tail-correlation matrices based on Value-at-Risk (VaR) estimates. We demonstrate how to obtain more effi cient...
Persistent link: https://www.econbiz.de/10010958605
This paper addresses the open debate about the usefulness of high-frequency (HF) data in large-scale portfolio allocation. Daily covariances are estimated based on HF data of the S&P 500 universe employing a blocked realized kernel estimator. We propose forecasting covariance matrices using a...
Persistent link: https://www.econbiz.de/10010958793
Assumptions about the dynamic and distributional behavior of risk factors are crucial for the construction of optimal portfolios and for risk assessment. Although asset returns are generally characterized by conditionally varying volatilities and fat tails, the normal distribution with constant...
Persistent link: https://www.econbiz.de/10005600451
The predictive likelihood is of particular relevance in a Bayesian setting when the purpose is to rank models in a forecast comparison exercise. This paper discusses how the predictive likelihood can be estimated for any subset of the observable variables in linear Gaussian state-space models...
Persistent link: https://www.econbiz.de/10010986379
Using unobservable conditional variance as measure, latentvariable approaches, such as GARCH and stochasticvolatility models, have traditionally been dominating the empirical finance literature. In recent years, with the availability of highfrequency financial market data modeling realized...
Persistent link: https://www.econbiz.de/10010986437
Renewed interest in fiscal policy has increased the use of quantitative models to evaluate policy. Because of modeling uncertainty, it is essential that policy evaluations be robust to alternative assumptions. We find that models currently being used in practice to evaluate fiscal policy...
Persistent link: https://www.econbiz.de/10010958577
We introduce a multivariate multiplicative error model which is driven by componentspecific observation driven dynamics as well as a common latent autoregressive factor. The model is designed to explicitly account for (information driven) common factor dynamics as well as idiosyncratic effects...
Persistent link: https://www.econbiz.de/10010958610