Showing 1 - 7 of 7
We consider envy-free (and budget-balanced) rules that are least manipulable with respect to agents counting or with respect to utility gains. Recently it has been shown that for any profile of quasi-linear preferences, the outcome of any such least manipulable envy-free rule can be obtained via...
Persistent link: https://www.econbiz.de/10010927904
We study a simple model of assigning indivisible objects (e.g., houses, jobs, offices, etc.) to agents. Each agent receives at most one object and monetary compensations are not possible. We completely describe all rules satisfying efficiency and resource-monotonicity. The characterized rules...
Persistent link: https://www.econbiz.de/10005346013
We study the assignment of indivisible objects with quotas (houses, jobs, or offices) to a set of agents (students, job applicants, or professors). Each agent receives at most one object and monetary compensations are not possible. We characterize efficient priority rules by efficiency,...
Persistent link: https://www.econbiz.de/10005346017
In many economic environments - such as college admissions, student placements at public schools, and university housing allocation - indivisible objects with capacity constraints are assigned to a set of agents when each agent receives at most one object and monetary compensations are not...
Persistent link: https://www.econbiz.de/10008617024
A common real-life problem is to fairly allocate a number of indivisible objects and a fixed amount of money among a group of agents. Fairness requires that each agent weakly prefers his consumption bundle to any other agent’s bundle. Under fairness, efficiency is equivalent to budget-balance...
Persistent link: https://www.econbiz.de/10008671538
In practice we often face the problem of assigning indivisible objects (e.g., schools, housing, jobs, offices) to agents (e.g., students, homeless, workers, professors) when monetary compensations are not possible. We show that a rule that satisfies consistency, strategy-proofness, and...
Persistent link: https://www.econbiz.de/10008671568
We study the problem of assigning indivisible and heterogenous objects (e.g., houses, jobs, offices, school or university admissions etc.) to agents. Each agent receives at most one object and monetary compensations are not possible. We consider mechanisms satisfying a set of basic properties...
Persistent link: https://www.econbiz.de/10011122151