Showing 1 - 10 of 12
We show that it is possible to adapt to nonparametric disturbance autocorrelation in time series regression in the presence of long memory in both regressors and disturbances by using a smoothed nonparametric spectrum estimate in frequency-domain generalized least squares. When the collective...
Persistent link: https://www.econbiz.de/10010745610
For linear processes, semiparametric estimation of the memory parameter, based on the log-periodogram and local Whittle estimators, has been exhaustively examined and their properties are well established. However, except for some specific cases, little is known about the estimation of the...
Persistent link: https://www.econbiz.de/10011071286
This paper introduces a nonparametric Granger-causality test for covariance stationary linear processes under, possibly, the presence of long-range dependence. We show that the test is consistent and has power against contiguous alternatives converging to the parametric rate T-½. Since the test...
Persistent link: https://www.econbiz.de/10011071140
Order selection based on criteria by Akaike (1974), AIC, Schwarz (1978), BIC or Hannan and Quinn (1979) HIC is often applied in empirical examples. They have been used in the context of order selection of weakly dependent ARMA models, AR models with unit or explosive roots and in the context of...
Persistent link: https://www.econbiz.de/10010884700
We describe and examine a consistent test for the correct specification of a regression function with dependent data. The test is based on the supremum of the difference between the parametric and nonparametric estimates of the regression model. Rather surprisingly, the behaviour of the test...
Persistent link: https://www.econbiz.de/10010928619
This article proposes a class of goodness-of-fit tests for the autocorrelation function of a time series process, including those exhibiting long-range dependence. Test statistics for composite hypotheses are functionals of a (approximated) martingale transformation of the Bartlett’s...
Persistent link: https://www.econbiz.de/10010928781
We frequently observe that one of the aims of time series analysts is to predict future values of the data. For weakly dependent data, when the model is known up to a finite set of parameters, its statistical properties are well documented and exhaustively examined. However, if the model was...
Persistent link: https://www.econbiz.de/10010745059
The purpose of this paper is to introduce and examine two alternative, although similar, approaches to the Moving Blocks and subsampling Bootstraps to bootstrapping the estimator of the parameters for time series regression models. More specifically, the first bootstrap is based on resampling...
Persistent link: https://www.econbiz.de/10010745602
The paper proposes a simple test for the hypothesis of strong cycles and as a by-product a test for weak dependence for linear processes. We show that the limit distribution of the test is the maximum of a (semi)Gaussian process G(τ), τ ∈ [0; 1]. Because the covariance structure of G(τ) is a...
Persistent link: https://www.econbiz.de/10011071202
This paper examines a nonparametric test for Granger-causality for a vector covariance stationary linear process under, possibly, the presence of long-range dependence. We show that the test converges to a non-distribution free multivariate Gaussian process, say vec (B(μ)) indexed by μ Є...
Persistent link: https://www.econbiz.de/10011071304