Showing 1 - 10 of 15
Much time series data are recorded on economic and financial variables. Statistical modelling of such data is now very well developed, and has applications in forecasting. We review a variety of statistical models from the viewpoint of ‘memory’, or strength of dependence across time, which...
Persistent link: https://www.econbiz.de/10010928635
This paper develops methods of investigating the existence and extent of cointegration in fractionally integrated systems. We focus on stationary series, with some discussion of extension to nonstationarity. The setting is semiparametric, so that modelling is effectively confined to a...
Persistent link: https://www.econbiz.de/10010745024
We show that it is possible to adapt to nonparametric disturbance autocorrelation in time series regression in the presence of long memory in both regressors and disturbances by using a smoothed nonparametric spectrum estimate in frequency-domain generalized least squares. When the collective...
Persistent link: https://www.econbiz.de/10010745610
Econometric interest in the possibility of long memory has developed as a flexible alternative to, or compromise between, the usual short memory or unit root prescriptions, for example in the context of modelling cointegrating or other relationships and in describing the dependence structure of...
Persistent link: https://www.econbiz.de/10010745718
In a panel data model with fixed effects, possible cross-sectional dependence is investigated in a spatial autoregressive setting. An Edgeworth expansion is developed for the maximum likelihood estimate of the spatial correlation coefficient. The expansion is used to develop more accurate...
Persistent link: https://www.econbiz.de/10011268329
We develop non-nested tests in a general spatial, spatio-temporal or panel data context. The spatial aspect can be interpreted quite generally, in either a geographical sense, or employing notions of economic distance, or when parametric modelling arises in part from a common factor or other...
Persistent link: https://www.econbiz.de/10011234813
Employing recent results of Robinson (2005) we consider the asymptotic properties of conditional-sum-of-squares (CSS) estimates of parametric models for stationary time series with long memory. CSS estimation has been considered as a rival to Gaussian maximum likelihood and Whittle estimation of...
Persistent link: https://www.econbiz.de/10010745068
The semiparametric local Whittle or Gaussian estimate of the long memory parameter is known to have especially nice limiting distributional properties, being asymptotically normal with a limiting variance that is completely known. However in moderate samples the normal approximation may not be...
Persistent link: https://www.econbiz.de/10011071333
We consider a time series model involving a fractional stochastic component, whose integration order can lie in the stationary/invertible or nonstationary regions and be unknown, and additive deterministic component consisting of a generalised polynomial. The model can thus incorporate competing...
Persistent link: https://www.econbiz.de/10010928700
We discuss a number of issues in the smoothed nonparametric estimation of kernel conditional probability density functions for stationary processes. The kernel conditional density estimate is a ratio of joint and marginal density estimates. We point out the different implications of leading...
Persistent link: https://www.econbiz.de/10010928761