Showing 1 - 10 of 11
This paper proposes a new explanation for the smile and skewness effects in implied volatilities. Starting from a microeconomic equilibrium approach, we develop a diffusion model for stock prices explicitly incorporating the technical demand induced by hedging strategies. This leads to a...
Persistent link: https://www.econbiz.de/10004968203
The basic model of financial economics is the Samuelson model of geometric Brownian motion because of the celebrated Black-Scholes formula for pricing the call option. The asset volatility is a linear function of the asset value and the model guarantees positive asset prices. We show that the...
Persistent link: https://www.econbiz.de/10004968209
Let X be a seminmartingale and Teta the space of all predictable X-integrable processes teta such that integral tetat dX is inthe space S square of semimartingales. We consider the problem of approximating a given random variable H element of L square (P) by the sum of a constant c and a...
Persistent link: https://www.econbiz.de/10004968253
In this survey we discuss models with level-dependent and stochastic volatility from the viewpoint of erivative asset analysis. Both classes of models are generalisations of the classical Black-Scholes model; they have been developed in an effort to build models that are flexible enough to cope...
Persistent link: https://www.econbiz.de/10004968274
Starting with observable annually compounded forward rates we derive a term structure model of interest rates. The model relies upon the assumption that a specific set of annually compounded forward rates is log-normally distributed. We derive solutions for interest rate caps and floors as well...
Persistent link: https://www.econbiz.de/10004968277
In this paper a stochastic volatility model is presented that directly prescribes the stochastic development of the implied Black-Scholes volatilities of a set of given standard options. Thus the model is able to capture the stochastic movements of a full term structure of implied volatilities....
Persistent link: https://www.econbiz.de/10004968281
We study the problem of convergence of discrete-time option values to continuous-time option values. While previous papers typically concentrate on the approximation of geometric Brownian motion by a binomial tree, we consider here the case where the model is incomplete in both continuos and...
Persistent link: https://www.econbiz.de/10004968291
We deal with the valuration and hedging of non path-dependent European options on one or several underlyings in a model of an international economy which allows for both interest rate and exchange rate risk. Using martingale theory we provide a unified and easily applicable approach to pricing...
Persistent link: https://www.econbiz.de/10004968300
The basic model of financial economics is the Samuelson model of geometric Brownian motion because of the celebrated Black-Scholes formula for pricing the call option. The asset's volatility is a linear function of the asset value and the model garantees positive asset prices. In this paper it...
Persistent link: https://www.econbiz.de/10004968438
While stochastic volatility models improve on the option pricing error when compared to the Black-Scholes-Merton model, mispricings remain. This paper uses mixed normal heteroskedasticity models to price options. Our model allows for significant negative skewness and time varying higher order...
Persistent link: https://www.econbiz.de/10005100954