Showing 1 - 10 of 14
We propose a new methodology to estimate the empirical pricing kernel implied from option data. In contrast to most of the studies in the literature that use an indirect approach, i.e. first estimating the physical and risk-neutral densities and obtaining the pricing kernel in a second step, we...
Persistent link: https://www.econbiz.de/10010546947
We propose constructing a set of trading strategies using predicted option returns for a relatively small forecasting period of ten trading days to form profitable hold-to-expiration, equally weighted, zero-cost portfolios based on 1-month at-the-money call and put options. We use a statistical...
Persistent link: https://www.econbiz.de/10004963497
We propose a flexible GARCH-type model for the prediction of volatility in financial time series. The approach relies on the idea of using multivariate B-splines of lagged observations and volatilities. Estimation of such a B-spline basis expansion is constructed within the likelihood framework...
Persistent link: https://www.econbiz.de/10005797706
We propose a new semi-parametric model for the implied volatility surface, which incorporates machine learning algorithms. Given a starting model, a tree-boosting algorithm sequentially minimizes the residuals of observed and estimated implied volatility. To overcome the poor predicting power of...
Persistent link: https://www.econbiz.de/10005453978
Motivated by the need for an unbiased and positive-semidefinite estimator of multivariate realized covariance matrices, we model noisy and asynchronous ultra-high-frequency asset prices in a state-space framework with missing data. We then estimate the covariance matrix of the latent states...
Persistent link: https://www.econbiz.de/10009653426
We provide new empirical evidence on volatility forecasting in relation to asymmetries present in the dynamics of both return and volatility processes. Leverage and volatility feedback effects among continuous and jump components of the S&P500 price and volatility dynamics are examined using...
Persistent link: https://www.econbiz.de/10009323017
We propose the Heterogeneous Autoregressive (HAR) model for the estimation and prediction of realized correlations. We construct a realized correlation measure where both the volatilities and the covariances are computed from tick-by-tick data. As for the realized volatility, the presence of...
Persistent link: https://www.econbiz.de/10005797693
We propose a simple but effective estimation procedure to extract the level and the volatility dynamics of a latent macroeconomic factor from a panel of observable indicators. Our approach is based on a multivariate conditionally heteroskedastic exact factor model that can take into account the...
Persistent link: https://www.econbiz.de/10008542831
We propose a tree-structured heterogeneous autoregressive (tree-HAR) process as a simple and parsimonious model for the estimation and prediction of tick-by-tick realized correlations. The model can account for different time and other relevant predictors' dependent regime shifts in the...
Persistent link: https://www.econbiz.de/10005453959
We propose a new multivariate DCC-GARCH model that extends existing approaches by admitting multivariate thresholds in conditional volatilities and conditional correlations. Model estimation is numerically feasible in large dimensions and positive semi-definiteness of conditional covariance...
Persistent link: https://www.econbiz.de/10005453965