Showing 1 - 5 of 5
We develop a practical and novel method for inference on intersection bounds, namely bounds defined by either the infimum or supremum of a parametric or nonparametric function, or equivalently, the value of a linear programming problem with a potentially infinite constraint set. We show that...
Persistent link: https://www.econbiz.de/10010593713
In parametric models a sufficient condition for local idenfication is that the vector of moment is differentiable at the true parameter with full rank derivative matrix. This paper shows that additional conditions are often needed in nonlinear, nonparametric models to avoid nonlinearities...
Persistent link: https://www.econbiz.de/10010593707
This paper provides inference methods for best linear approximations to functions which are known to lie within a band. It extends the partial identification literature by allowing the upper and lower functions defining the band to be any functions, including ones carrying an index, which can be...
Persistent link: https://www.econbiz.de/10010827555
We study identification in static, simultaneous move finite games of complete information, where the presence of multiple Nash equilibria may lead to partial identification of the model parameters. The identification regions for these parameters proposed in the related literature are known not...
Persistent link: https://www.econbiz.de/10005727666
We propose inference procedures for partially identified population features for which the population identification region can be written as a transformation of the Aumann expectation of a properly defined set valued random variable (SVRV). An SVRV is a mapping that associates a set (rather...
Persistent link: https://www.econbiz.de/10005811428