Showing 1 - 5 of 5
This paper studies the local robustness of estimators and tests for the conditional location and scale parameters in a strictly stationary time series model. We first derive optimal bounded-influence estimators for such settings under a conditionally Gaussian reference model. Based on these...
Persistent link: https://www.econbiz.de/10005453970
We develop infinitesimally robust statistical procedures for general diffusion processes. We first prove existence and uniqueness of the times series influence function of conditionally unbiased M–estimators for ergodic and stationary dffusions, under weak conditions on the (martingale)...
Persistent link: https://www.econbiz.de/10005797681
We propose a new multivariate DCC-GARCH model that extends existing approaches by admitting multivariate thresholds in conditional volatilities and conditional correlations. Model estimation is numerically feasible in large dimensions and positive semi-definiteness of conditional covariance...
Persistent link: https://www.econbiz.de/10005453965
We propose a new multivariate GARCH model with Dynamic Conditional Correlations that extends previous models by admitting multivariate thresholds in conditional volatilities and correlations. The model estimation is feasible in large dimensions and the positive deniteness of the conditional...
Persistent link: https://www.econbiz.de/10005453982
We propose a general robust semiparametric bootstrap method to estimate conditional predictive distributions of GARCH-type models. Our approach is based on a robust estimator for the parameters in GARCH-type models and a robustified resampling method for standardized GARCH residuals, which...
Persistent link: https://www.econbiz.de/10005453980