Showing 1 - 10 of 53
<p>We develop inference procedures for policy analysis based on regression methods. We consider policy interventions that correspond to either changes in the distribution of covariates, or changes in the conditional distribution of the outcome given covariates, or both. Under either of these policy...</p>
Persistent link: https://www.econbiz.de/10009649769
Counterfactual distributions are important ingredients for policy analysis and de-composition analysis in empirical economics. In this article we develop modelling and inference tools for counterfactual distributions based on regression methods. The counterfactual scenarios that we consider...
Persistent link: https://www.econbiz.de/10010660012
<p>In this paper we develop procedures for performing inference in regression models about how potential policy interventions affect the entire marginal distribution of an outcome of interest. These policy interventions consist of either changes in the distribution of covariates related to the...</p>
Persistent link: https://www.econbiz.de/10005037561
Quantile regression is an increasingly important empirical tool in economics and other sciences for analyzing the impact of a set of regressors on the conditional distribution of an outcome. Extremal quantile regression, or quantile regression applied to the tails, is of interest in many...
Persistent link: https://www.econbiz.de/10009416813
This paper considers identification and estimation of ceteris paribus effects of continuous regressors in nonseparable panel models with time homogeneity. The effects of interest are derivatives of the average and quantile structural functions of the model. We find that these derivatives are...
Persistent link: https://www.econbiz.de/10010739824
We consider estimation of policy relevant treatment effects in a data-rich environment where there may be many more control variables available than there are observations. In addition to allowing many control variables, the setting we consider allows heterogeneous treatment effects, endeogenous...
Persistent link: https://www.econbiz.de/10010712644
In the first part of the paper, we consider estimation and inference on policy relevant treatment effects, such as local average and local quantile treatment effects, in a data-rich environment where there may be many more control variables available than there are observations. In addition to...
Persistent link: https://www.econbiz.de/10010827534
This paper develops IV estimators for unconditional quantile treatment effects (QTE) when the treatment selection is endogenous. In contrast to conditional QTE, i.e. the effects conditional on a large number of covariates X, the unconditional QTE summarize the effects of a treatment for the...
Persistent link: https://www.econbiz.de/10005727706
Fixed effects estimators of nonlinear panel data models can be severely biased because of the well-known incidental parameter problem. We develop analytical and jackknife bias corrections for nonlinear models with both individual and time effects. Under asymptotic sequences where the...
Persistent link: https://www.econbiz.de/10010723485
<p>This paper introduces bias-corrected estimators for nonlinear panel data models with both time invariant and time varying heterogeneity. These include limited dependent variable models with both unobserved individual effects and endogenous explanatory variables, and sample selection models with...</p>
Persistent link: https://www.econbiz.de/10005811472