Showing 41 - 50 of 158
In this paper we consider the polynomial regression model in the presence of multiplicative measurement error in the predictor. Consistent parameter estimates and their associated standard errors are derived. Two general methods are considered, with the methods differing in their assumptions...
Persistent link: https://www.econbiz.de/10009631750
There are three major points to this article: 1. Measurement error causes biases in regression fits. The line one would obtain if one could accurately measure exposure to environmental lead media will differ in important ways when one measures exposure with error. 2. The effects of measurement...
Persistent link: https://www.econbiz.de/10009631751
We describe methods for estimating the regression function nonparametrically and for estimating the variance components in a simple variance component model which is sometimes used for repeated measures data or data with a simple clustered structure. We consider a number of different ways of...
Persistent link: https://www.econbiz.de/10009631752
For the problem of model selection, full cross-validation has been proposed as alternative criterion to the traditional cross-validation, particularly in cases where the latter one is not well defined. To justify the use of the new proposal we show that under some conditions, both criteria share...
Persistent link: https://www.econbiz.de/10009631753
In many problems one wants to model the relationship between a response Y and a covariate X. Sometimes it is difficult, expensive, or even impossible to observe X directly, but one can instead observe a substitute variable W which is easier to obtain. By far the most common model for the...
Persistent link: https://www.econbiz.de/10009631755
In parametric regression problems, estimation of the parameter of interest is typically achieved via the solution of a set of unbiased estimating equations. We are interested in problems where in addition to this parameter, the estimating equations consist of an unknown nuisance function which...
Persistent link: https://www.econbiz.de/10009631757
We construct pointwise confidence intervals for regression functions. The method uses nonparametric kernel estimates and the "moment-oriented" bootstrap method of Bunke which is a wild bootstrap based on smoothed local estimators of higher order error moments. We show that our bootstrap...
Persistent link: https://www.econbiz.de/10009632602
Semiparametric single-index regression involves an unknown finite dimensional parameter and an unknown (link) function. We consider estimation of the parameter via the pseudo maximum likelihood method. For this purpose we estimate the conditional density of the response given a candidate index...
Persistent link: https://www.econbiz.de/10009657124
Persistent link: https://www.econbiz.de/10009657126
Additive regression models have a long history in nonparametric regression. It is well known that these models can be estimated at the one dimensional rate. Until recently, however, these models have been estimated by a backfitting procedure. Although the procedure converges quickly, its...
Persistent link: https://www.econbiz.de/10009657128