Showing 1 - 10 of 10
This paper shows nonparametric identification of quantile treatment effects (QTE) in the regression discontinuity design (RDD) and proposes simple estimators. Quantile treatment effects are a very helpful tool to characterize the effects of certain interventions on the outcome distribution. The...
Persistent link: https://www.econbiz.de/10005233749
In this paper, the regression discontinuity design (RDD) is generalized to account for differences in observed covariates X in a fully nonparametric way. It is shown that the treatment effect can be estimated at the rate for one-dimensional nonparametric regression irrespective of the dimension...
Persistent link: https://www.econbiz.de/10005762088
Traditional instrumental variable estimators do not generally estimate effects for the treated population but for the unobserved population of compliers. They do identify effects for the treated when there is one-sided perfect non-compliance. However, this property is lost when covariates are...
Persistent link: https://www.econbiz.de/10005703090
This note argues that nonparametric regression not only relaxes functional form assumptions vis-a-vis parametric regression, but that it also permits endogenous control variables. To control for selection bias or to make an exclusion restriction in instrumental variables regression valid,...
Persistent link: https://www.econbiz.de/10005703167
Propensity score matching is widely used in treatment evaluation to estimate average treatment effects. Nevertheless, the role of the propensity score is still controversial. Since the propensity score is usually unknown and has to be estimated, the efficiency loss arising from not knowing the...
Persistent link: https://www.econbiz.de/10005822913
This paper develops IV estimators for unconditional quantile treatment effects (QTE) when the treatment selection is endogenous. In contrast to conditional QTE, i.e. the effects conditional on a large number of covariates X, the unconditional QTE summarize the effects of a treatment for the...
Persistent link: https://www.econbiz.de/10005700992
This paper shows nonparametric identification of quantile treatment effects (QTE) in the regression discontinuity design. The distributional impacts of social programs such as welfare, education, training programs and unemployment insurance are of large interest to economists. QTE are an...
Persistent link: https://www.econbiz.de/10008602732
This paper reviews the main identification and estimation strategies for microeconomic policy evaluation. Particular emphasis is laid on evaluating policies consisting of multiple programmes, which is of high relevance in practice. For example, active labour market policies may consist of...
Persistent link: https://www.econbiz.de/10005566371
In this paper nonparametric instrumental variable estimation of local average treatment effects (LATE) is extended to incorporate confounding covariates. Estimation of local average treatment effects is appealing since their identification relies on much weaker assumptions than the...
Persistent link: https://www.econbiz.de/10005566385
Choosing among a number of available treatments the most suitable for a given subject is an issue of everyday concern. A physician has to choose an appropriate drug treatment or medical treatment for a given patient, based on a number of observed covariates X and prior experience. A case worker...
Persistent link: https://www.econbiz.de/10005566691