Showing 1 - 4 of 4
We consider the long memory and leverage properties of a model for the conditional variance of an observable stationary sequence, where the conditional variance is the square of an inhomogeneous linear combination of past values of the observable sequence, with square summable weights. This...
Persistent link: https://www.econbiz.de/10010745453
We show that it is possible to adapt to nonparametric disturbance autocorrelation in time series regression in the presence of long memory in both regressors and disturbances by using a smoothed nonparametric spectrum estimate in frequency-domain generalized least squares. When the collective...
Persistent link: https://www.econbiz.de/10010745610
This paper introduces a nonparametric Granger-causality test for covariance stationary linear processes under, possibly, the presence of long-range dependence. We show that the test is consistent and has power against contiguous alternatives converging to the parametric rate T-½. Since the test...
Persistent link: https://www.econbiz.de/10011071140
For a particular conditionally heteroscedastic nonlinear (ARCH) process for which the conditional variance of the observable sequence rt is the square of an inhomogeneous linear combination of rs, s < t, we give conditions under which, for integers 1 > 2, r' has long memory autocorrelation and normalized partial sums of ri converge to fractional...</t,>
Persistent link: https://www.econbiz.de/10011071148