Showing 1 - 10 of 745
We argue that comprehensive out-of-sample (OOS) evaluation using statistical decision theory (SDT) should replace the current practice of K-fold and Common Task Framework validation in machine learning (ML) research. SDT provides a formal framework for performing comprehensive OOS evaluation...
Persistent link: https://www.econbiz.de/10014512123
The substantial fluctuations in oil prices in the wake of the COVID-19 pandemic and the Russian invasion of Ukraine have highlighted the importance of tail events in the global market for crude oil which call for careful risk assessment. In this paper we focus on forecasting tail risks in the...
Persistent link: https://www.econbiz.de/10014544801
This paper shows that shootings are predictable enough to be preventable. Using arrest and victimization records for almost 644,000 people from the Chicago Police Department, we train a machine learning model to predict the risk of being shot in the next 18 months. We address central concerns...
Persistent link: https://www.econbiz.de/10013334389
This paper proposes a new way of displaying and analyzing macroeconomic time series to form recession forecasts. The proposed data displays contain the last three years of each expansion. These allow observers to see for themselves what is different about the last year before recession. Based on...
Persistent link: https://www.econbiz.de/10013334464
We nowcast world trade using machine learning, distinguishing between tree-based methods (random forest, gradient boosting) and their regression-based counterparts (macroeconomic random forest, gradient linear boosting). While much less used in the literature, the latter are found to outperform...
Persistent link: https://www.econbiz.de/10014322806
We find evidence suggesting that surveys of professional forecasters are biased by strategic incentives. First, we find that individual forecasts overreact to idiosyncratic information but underreact to common information. Second, we show that this bias is not present in forecasts data that is...
Persistent link: https://www.econbiz.de/10014337840
This paper studies the predictability of ultra high-frequency stock returns and durations to relevant price, volume and transactions events, using machine learning methods. We find that, contrary to low frequency and long horizon returns, where predictability is rare and inconsistent,...
Persistent link: https://www.econbiz.de/10013362020
Many observers have forecast large partisan shifts in the US electorate based on demographic trends. Such forecasts are appealing because demographic trends are often predictable even over long horizons. We backtest demographic forecasts using data on US elections since 1952. We envision a...
Persistent link: https://www.econbiz.de/10015094858
This paper presents a flow-based methodology for real-time unemployment rate projections and shows that this approach performed considerably better at the onset of the COVID-19 recession in the spring 2020 in predicting the peak unemployment rate as well as its rapid decline over the year. It...
Persistent link: https://www.econbiz.de/10012482661
Forecasts for the two or three years after mid-2014 have converged on growth rates of real GDP in the range of 3.0 to 3.5 percent, a major stepwise increase from realized growth of 2.1 percent between mid-2009 and mid-2014. However, these forecasts are based on the demand for goods and services....
Persistent link: https://www.econbiz.de/10012458244