Showing 1 - 10 of 427
This paper studies the predictability of ultra high-frequency stock returns and durations to relevant price, volume and transactions events, using machine learning methods. We find that, contrary to low frequency and long horizon returns, where predictability is rare and inconsistent,...
Persistent link: https://www.econbiz.de/10013362020
Interest in prediction markets has increased in the last decade, driven in part by the hope that these markets will prove to be valuable tools in forecasting, decision-making and risk management -- in both the public and private sectors. This paper outlines five open questions in the literature,...
Persistent link: https://www.econbiz.de/10012466609
We survey the nascent literature on machine learning in the study of financial markets. We highlight the best examples of what this line of research has to offer and recommend promising directions for future research. This survey is designed for both financial economists interested in grasping...
Persistent link: https://www.econbiz.de/10014322889
We argue that comprehensive out-of-sample (OOS) evaluation using statistical decision theory (SDT) should replace the current practice of K-fold and Common Task Framework validation in machine learning (ML) research. SDT provides a formal framework for performing comprehensive OOS evaluation...
Persistent link: https://www.econbiz.de/10014512123
The substantial fluctuations in oil prices in the wake of the COVID-19 pandemic and the Russian invasion of Ukraine have highlighted the importance of tail events in the global market for crude oil which call for careful risk assessment. In this paper we focus on forecasting tail risks in the...
Persistent link: https://www.econbiz.de/10014544801
This paper shows that shootings are predictable enough to be preventable. Using arrest and victimization records for almost 644,000 people from the Chicago Police Department, we train a machine learning model to predict the risk of being shot in the next 18 months. We address central concerns...
Persistent link: https://www.econbiz.de/10013334389
This paper proposes a new way of displaying and analyzing macroeconomic time series to form recession forecasts. The proposed data displays contain the last three years of each expansion. These allow observers to see for themselves what is different about the last year before recession. Based on...
Persistent link: https://www.econbiz.de/10013334464
We nowcast world trade using machine learning, distinguishing between tree-based methods (random forest, gradient boosting) and their regression-based counterparts (macroeconomic random forest, gradient linear boosting). While much less used in the literature, the latter are found to outperform...
Persistent link: https://www.econbiz.de/10014322806
We find evidence suggesting that surveys of professional forecasters are biased by strategic incentives. First, we find that individual forecasts overreact to idiosyncratic information but underreact to common information. Second, we show that this bias is not present in forecasts data that is...
Persistent link: https://www.econbiz.de/10014337840
We study a firm that justifies its novel use of equity derivatives as a cash-flow hedging strategy. Our purpose is to understand the challenge of translating risk management theory into managerial action. Cephalon Inc., a biotech firm, bought a large block of call options on its own stock. If...
Persistent link: https://www.econbiz.de/10012471002