Showing 1 - 10 of 449
We survey the nascent literature on machine learning in the study of financial markets. We highlight the best examples of what this line of research has to offer and recommend promising directions for future research. This survey is designed for both financial economists interested in grasping...
Persistent link: https://www.econbiz.de/10014322889
We show, using machine learning, that fund characteristics can consistently differentiate high from low-performing mutual funds, as well as identify funds with net-of-fees abnormal returns. Fund momentum and fund flow are the most important predictors of future risk-adjusted fund performance,...
Persistent link: https://www.econbiz.de/10012938692
Can an algorithm assist firms in their hiring decisions of corporate directors? This paper proposes a method of selecting boards of directors that relies on machine learning. We develop algorithms with the goal of selecting directors that would be preferred by the shareholders of a particular...
Persistent link: https://www.econbiz.de/10012453279
We have seen in the past decade a sharp increase in the extent that companies use data to optimize their businesses. Variously called the `Big Data' or `Data Science' revolution, this has been characterized by massive amounts of data, including unstructured and nontraditional data like text and...
Persistent link: https://www.econbiz.de/10012453413
We propose an approach to measuring the state of the economy via textual analysis of business news. From the full text content of 800,000 Wall Street Journal articles for 1984{2017, we estimate a topic model that summarizes business news as easily interpretable topical themes and quantifies the...
Persistent link: https://www.econbiz.de/10012479172
A key challenge for research on many questions in the social sciences is that it is difficult to link historical records in a way that allows investigators to observe people at different points in their life or across generations. In this paper, we develop a new approach that relies on millions...
Persistent link: https://www.econbiz.de/10012480171
We apply deep learning to daytime satellite imagery to predict changes in income and population at high spatial resolution in US data. For grid cells with lateral dimensions of 1.2km and 2.4km (where the average US county has dimension of 55.6km), our model predictions achieve R2 values of 0.85...
Persistent link: https://www.econbiz.de/10012794597
A forecasting comparison is undertaken in which 49 univariate forecasting methods, plus various forecast pooling procedures, are used to forecast 215 U.S. monthly macroeconomic time series at three forecasting horizons over the period 1959 - 1996. All forecasts simulate real time implementation,...
Persistent link: https://www.econbiz.de/10012472204
Policymakers can take actions to prevent local conflict before it begins, if such violence can be accurately predicted. We examine the two countries with the richest available sub-national data: Colombia and Indonesia. We assemble two decades of fine-grained violence data by type, alongside...
Persistent link: https://www.econbiz.de/10012479929
Despite the clear success of forecast combination in many economic environments, several important issues remain incompletely resolved. The issues relate to selection of the set of forecasts to combine, and whether some form of additional regularization (e.g., shrinkage) is desirable. Against...
Persistent link: https://www.econbiz.de/10012480620